Absorptance of a Solid Measured on the Integrating Sphere

A simple solid has two interfaces (air/solid and solid/air) and the absorbance of the material. At each interface an incoming ray, $I_{\rm in}$ produces a reflected ray, $I_{\rm r}$, and a transmitted ray, $I_{\rm r}$.

$$\begin{array}{c|c} I_{in} & I_t \\ \hline I_r & \end{array}$$

$$I_{\text{in}} = I_{\text{r}} + I_{t} \text{ or } 1 = \frac{I_{\text{r}}}{I_{\text{in}}} + \frac{I_{\text{t}}}{I_{\text{in}}} = r + t$$

$$\boxed{1 - t = r}$$
(1)

where r and t are the reflectance and transmittance. For the solid part some of the light is absorbed in the solid and the rest transmitted. If I_{in} is the incoming ray's intensity that enters the

solide (after any reflection at the interface) and I_t is the transmitted ray's intensity before interface reflection and I_A is the intensity absorbed by the solid.

$$I_{\rm in} = I_{\rm A} + I_{\rm t}$$
 or $1 = a_s + t_s$

where a_s is absorptance, i.e. $a_s = I_{in}/I_t$. For the complete sample we measure the intensity of the transmitted beam or the transmittance, T

$$T = t_1 \times t_s \times t_2 \tag{2}$$

where the subscripts 1 and 2 indicate the front and back air/sample and sample/air interfaces. Thus

$$t_{s} = \frac{T}{t_{1}t_{2}} \tag{3}$$

where T transmittance that the integrating sphere measures. If the sample is mounted on the exit port you can measure r_1 and then if you rotate the sample 180° you can measure r_2 , which are related to t_1 and t_2 by eq 1. Since the transmittance of the sample is related to the extinction coefficient, ε , or the attenuation length, α ,

$$A = -\log(t_s) = \varepsilon[c]l$$
 and $\alpha l = -\ln(t_s)$ (5)

where l is the length of the sample.

Notes:

- 1) When measuring the reflectance of one interface the second interface must not contribute to the measured reflectance.
- 2) The reflectance is normally independent of whether you are going from air to solid or solid to air.
- 3) For a flat surface normal to the surface the reflectance at a particular wavelength is given by $r = (n_1 n_2)^2 / (n_1 + n_2)^2$ where n is the refractive index at the wavelength.

Material	Refactive index	Wavelength range	Reflectance	Reflectance
			Air/material	Water/material
Air	1.00	all	_	0.02
Water	1.33	Visible to NIR	0.02	_
Silicon	3.96	Visible	0.36	0.25
Quartz	1.46	UV-visible	0.035	0.002
Glass	1.5	Visible	0.04	0.004
TiO ₂	2.50	Visible	0.18	0.09

Note that transmittances are multiplicative so while the air/silicon interface reflects 36% of visible light an Si wafer in a water cell only reflects about 26% ((1-0.04)*(1-0.004)*(10.25)) of the light.