1. Tables of Auger Parameter Data Line position data from the literature that are included along with the elemental spectra for F, Na, Cu, Zn, As, Ag, Cd, In, and Te in Section II are presented as two-dimensional plots, rather than the one-dimensional binding energy charts included with the rest of the elements. While these two-dimensional plots are more useful for chemical state identification, they lack the necessary space for inclusion of some chemical states, and references cannot be included. The tabulations presented in this section are the basis for the two-dimensional charts in Section II. It should be noted that a number of chemical states included here were not incorporated in the plots. #### **ACKNOWLEDGEMENTS** Gratitude is expressed to Shell Development Company for the use of some unpublished energy data, and especially for permission to publish several two-dimensional chemical state plots in a form similar to that in the comprehensive paper by C. D. Wagner, L. H. Gale, and R. H. Raymond, submitted for publication. # Fluorine, F Atomic 9 | Compound | 1s | $KL_{23}L_{23}$ | $\alpha + hv$ | Ref. | |--|-------|-----------------|---------------|------| | SELECTION DE LA CONTRACTION DEL CONTRACTION DE LA L | 684.9 | 654.9 | 1339.8 | Φ | | LiF* | 684.6 | 655.8 | 1340.4 | W1 | | NaBF ₄ | 686.8 | 653.0 | 1339.8 | W1 | | C ₄ F ^{b)} | 687.2 | 656.7 | 1343.9 | W1 | | CF ^{b)} | 689.2 | 653.1 | 1342.3 | W1 | | (CF ₂) ₀ | 689.1 | 652.1 | 1341.2 | W3 | | Ni(OOCCF ₃) ₂ | 688.2 | 653.1 | 1341.3 | W1 | | NaF | 684.2 | 655.2 | 1339.4 | W3 | | MgF ₂ | 685.3 | 654.3 | 1339.6 | W3 | | (NH₄)₃AIF ₆ | 684.5 | 655.4 | 1339.9 | W1 | | Na ₂ AIF* | 685.3 | 654.3 | 1339.6 | W1 | | K₃ÅIFå* | 685.1 | 654.4 | 1339.5 | W1 | | Na₂SiF₅ | 685.8 | 653.2 | 1339.0 | W3 | | CoSiF ₆ | 685.8 | 654.5 | 1340.3 | W1 | | CaF ₂ | 684.6 | 655.6 | 1340.2 | W1 | | Na₂TiF ₆ | 685.1 | 655.3 | 1340.4 | W3 | | K ₂ TiF ₆ * | 684.8 | 655.9 | 1340.7 | W1 | | MnF ₂ * | 684.6 | 655.7 | 1340.3 | W1 | | K₃FeF。 | 683.8 | 656.2 | 1340.0 | W1 | | Fe(MPT)PF ₆ ^{a)} | 686.1 | 654.3 | 1340.4 | W1 | | NiF ₂ | 684.9 | 655.6 | 1340.5 | GW | | NiF ₂ * | 684.8 | 655.8 | 1340.6 | W1 | | CuF ₂ | 684.1 | 657.2 | 1341.3 | GW | | CuF ₂ | 684.5 | 656.4 | 1340.9 | W1 | | Compound | 1s | KL23L23 | $\alpha + hv$ | Ref. | |------------------------------------|-------|---------|---------------|------| | ZnF | 684.3 | 655.8 | 1340.3 | GW | | ZnF ₂ * | 684.8 | 655.8 | 1340.6 | W3 | | Na ₂ GeF ₆ * | 685.7 | 654.2 | 1339.9 | W1 | | SrF̂, | 684.8 | 656.5 | 1341.3 | W1 | | YF ₃ | 685.1 | 656.0 | 1341.1 | W1 | | Na ₂ ZrF ₆ * | 684.8 | 655.3 | 1340.1 | W1 | | K ₂ NbF ₂ * | 685.2 | 655.4 | 1340.6 | W1 | | AgF | 682.5 | 659.5 | 1342.0 | GW | | CďF, | 684.4 | 656.0 | 1340.4 | GW | | CdF, | 684.2 | 656.4 | 1340.6 | W1 | | InF ₃ | 685.0 | 656.6 | 1341.6 | W1 | | NaSnF ₃ * | 685.1 | 654.6 | 1339.7 | W1 | | KSbF ₆ | 686.4 | 654.1 | 1339.5 | W3 | | CsF | 685.7 | 654.0 | 1339.7 | W1 | | BaF ₂ | 683.5 | 656.4 | 1340.0 | W1 | | LaF ₃ | 684.3 | 658.2 | 1342.5 | W1 | | PrF ₃ | 684.4 | 657.4 | 1341.8 | W1 | | NdF ₃ * | 684.6 | 657.2 | 1341.8 | W1 | | SmF ₃ * | 684.4 | 657.2 | 1341.6 | W1 | | HfF ₄ * | 685.2 | 655.5 | 1340.7 | W1 | | K,TaF,* | 685.0 | 655.2 | 1340.2 | W1 | | PbF, | 683.4 | 658.7 | 1342.1 | W1 | | ThF₄ See 19 | 684.7 | 657.2 | 1341.9 | W1 | ^{*}Omitted from plot because of crowding a) MPT = $C_{27}H_{33}N_7$ a ligand with three methylpyridine rings. b) C₄F and CF are fluorinated graphite samples. # Sodium, Na Atomic 11 | Compound | 1s | $KL_{23}L_{23}$ | $\alpha + hv$ | Ref. | |---|--------|-----------------|---------------|------| | Na | 1071.5 | 994.4 | 2065.9 | KL1 | | Na | 1071.8 | 994.5 | 2066.3 | BS | | Na ox | 1072.5 | 990.0 | 2062.5 | BS | | NaF | 1071.1 | 988.8 | 2059.9 | W3 | | NaCl | 1071.4 | 990.4 | 2061.8 | W3 | | NaBr | 1071.6 | 990.8 | 2062.4 | W3 | | NaI | 1071.5 | 991.4 | 2062.9 | W1 | | NaOAc | 1070.8 | 990.2 | 2061.0 | W3 | | Na ₂ CO ₃ | 1071.3 | 990.0 | 2061.3 | W1 | | NaHCO ₃ * | 1071.1 | 990.0 | 2061.1 | W1 | | NaOOCH* | 1070.9 | 990.0 | 2060.9 | W1 | | Na ₂ C ₂ O ₄ * | 1070.6 | 990.7 | 2061.3 | W1 | | Na thioglycollate* | 1071.0 | 990.6 | 2061.6 | W1 | | Na EDTA ^{a)} * | 1070.6 | 990.6 | 2061.2 | W1 | | NaNO,* | 1071.4 | 990.0 | 2061.4 | W3 | | NaNO ₃ | 1071.2 | 989.6 | 2060.8 | W3 | | NaBF | 1072.5 | 987.3 | 2059.8 | W3 | | Na ₃ AIF ₆ | 1071.7 | 988.4 | 2060.1 | W3 | | Na₂SiF ₆ | 1071.5 | 987.9 | 2059.4 | W3 | | Na ₂ TiF ₆ * | 1071.4 | 988.7 | 2060.1 | W3 | | Na ₂ GeF ₆ | 1071.5 | 988.3 | 2059.8 | W3 | | · · · · · · · · · · · · · · · · · · · | | | | | | Compound | 1s | $KL_{23}L_{23}$ | $\alpha + hv$ | Ref. | |--|--------|-----------------|---------------|------| | Na_2ZrF_6 | 1071.4 | 988.8 | 2060.2 | W3 | | Na zeolite | 1071.6 | 989.0 | 2060.6 | W3 | | NaPO ₃ | 1071.6 | 989.4 | 2061.0 | W3 | | Na₂HPO₄ | 1071.4 | 990.1 | 2061.5 | Ф | | Na ₂ SO ₃ * | 1071.2 | 990.4 | 2061.6 | W3 | | Na ₂ S ₂ O ₃ * | 1071.4 | 990.3 | 2061.7 | W3 | | Na ₂ S ₂ O ₄ | 1071.0 | 990.8 | 2061.8 | W3 | | Na ₂ SO ₄ | 1071.0 | 990.0 | 2061.0 | W3 | | Na benzenesulfonate* | 1071.1 | 989.9 | 2061.0 | W1 | | Chloramine-T ^{b)} * | 1071.6 | 989.2 | 2060.8 | W1 | | Na ₂ CrO ₄ | 1071.0 | 991.1 | 2062.1 | W3 | | Na ₂ Cr ₂ O ₇ * | 1071.4 | 990.6 | 2062.0 | W1 | | NaAsO ₂ | 1070.7 | 990.8 | 2061.5 | W3 | | Na ₂ SeO ₃ | 1070.6 | 991.1 | 2061.7 | W3 | | Na₂MoO₄* | 1070.7 | 990.2 | 2060.9 | W3 | | Na ₂ PdCl ₄ * | 1071.6 | 990.4 | 2062.0 | W3 | | Na ₂ SnO ₃ •3H ₂ O* | 1070.9 | 990.5 | 2061.4 | W1 | | Na,TeO,* | 1070.9 | 990.6 | 2061.5 | W3 | | Na ₂ WO ₄ * | 1071.1 | 990.6 | 2061.7 | W3 | | Na,IrCl, ·6H,O* | 1071.7 | 989.4 | 2061.1 | W3 | | NaBiO ₃ * | 1071.1 | 991.1 | 2062.2 | W1 | b) Chloramine-T = CH₃C₆H₄SO₂NNaCl ^{*}Omitted from plot because of crowding a) NaEDTA = Na sait of ethylenediaminetetracetic acid # Copper, Cu Atomic 29 | Compound | 2p _{3/2} | L ₃ M ₄₅ M ₄₅ | $\alpha + hv$ | Ref. | |---------------------|-------------------|--|---------------|----------| | Cu | 932.4 | 918.6 | 1851.0 | Φ | | Cu* | 932.0 | 919.2 | 1851.2 | S3 | | Cu* | 932.4 | 919.0 | 1851.4 | GW | | Cu* | 932.2 | 919.2 | 1851.4 | MRC | | Cu* | 932.6 | 918.2 | 1850.8 | KPM | | Cu* | 932.5 | 918.8 | 1851.3 | FKW | | Cu* | 932.4 | 918.8 | 1851.2 | W3 | | Al₂Cu | 933.6 | 918.3 | 1851.9 | FKW | | Cu₂O | 932.2 | 917.4 | 1849.6 | GW | | Cu₂O* | 932.2 | 917.6 | 1849.8 | MRC | | Cu₂O* | 932.2 | 916.9 | 1849.1 | W3 | | CuCN | 932.9 | 914.7 | 1847.6 | W3 | | CuCl | 932.2 | 915.8 | 1848.0 | GW | | CuCl | 932.4 | 915.2 | 1847.6 | W3 | | Cu₂S | 932.3 | 917.6 | 1849.9 | W3 | | CuCO₃ | 934.8 | 916.5 | 1851.3 | W1 | | CuO | 933.5 | 917.9 | 1851.4 | MRC | | CuO* | 933.4 | 918.3 | 1851.7 | GW | | CuO* | 933.0 | 917.9 | 1850.9 | S3 | | CuF₂ | 936.8 | 915.0 | 1851.8 | W1 | | CuF ₂ | 935.9 | 916.2 | 1852.1 | GW | | CuSiO ₃ | 934.7 | 915.4 | 1850.1 | W1 | | CuSO₄ aq | 935.3 | 916.1 | 1851.4 | D | | CuCl ₂ * | 934.2 | 915.7 | 1849.9 | GW | | CuCl₂* | 935.0 | 915.3 | 1850.3 | W1 | | $CuPT(PF_6)_2^{a)}$ | 933.8 | 916.1 | 1849.9 | W1 | Zinc, Zn Atomic 30 | Compound | 2p _{3/2} | L ₃ M ₄₅ M ₄₅ | $\alpha + hv$ | Ref. | |---|-------------------|--|---------------|------| | Zn | 1021.4 | 992.4 | 2013.8 | Φ | | Zn* | 1021.7 | 992.2 | 2013.9 | W3 | | Zn* | 1021.5 | 992.7 | 2014.2 | S1 | | Zn* | 1021.7 | 992.6 | 2014.3 | CE | | Zn* | 1021.8 | 992.0 | 2013.8 | KL2 | | Zn* | 1021.6 | 992.0 | 2013.6 | KPM | | Zn* | 1022.1 | 992.0 | 2014.1 | GW | | Zn* | 1021.9 | 992.3 | 2014.2 | HF2 | | Zn* | 1021.4 | 992.5 | 2013.9 | MD | | ZnO | 1021.7 | 988.8 | 2010.5 | Ф | | ZnO | 1022.5 | 987.7 | 2010.2 | GW | | ZnO* | 1022.5 | 987.6 | 2010.0 | HF2 | | Zn ox | 1021.8 | 988.2 | 2010.0 | W3 | | Zn ox | 1021.9 | 989.1 | 2011.0 | CE | | Zn acac₂ | 1021.2 | 987.9 | 2009.1 | W3 | | ZnF ₂ | 1022.4 | 986.7 | 2009.1 | W3 | | ZnF₂ | 1022.2 | 986.2 | 2008.4 | GW | | ZnS | 1022.4 | 988.2 | 2010.6 | HF2 | | ZnS | 1022.0 | 989.7 | 2011.7 | GW | | ZnBr₂ | 1023.2 | 987.5 | 2010.7 | W3 | | ZnI₂ | 1022.9 | 988.7 | 2011.6 | GW | | ZnPT(BF ₄) ₂ ^{a)} | 1021.1 | 988.5 | 2009.6 | W1 | | ZnTe | 1022.0 | 991.3 | 2011.3 | HF2 | ^{*}Omitted from plot because of crowding a) PT = ligand, C24H27N7, containing three pyridine rings. ### Arsenic, As Atomic 33 | Compound | 3d | $L_3M_{45}M_{45}$ | $\alpha + hv$ | Ref. | |---|------|-------------------|---------------|------| | As | 41.3 | 1225.4 | 1266.7 | W1 | | As | 41.3 | 1226.3 | 1267.6 | RWJ | | As | 41.6 | 1225.2 | 1266.8 | BWW | | NbAs | 40.6 | 1226.2 | 1266.8 | BWW | | GaAs | 40.7 | 1225.6 | 1266.3 | Ф | | As ₂ Se ₃ | 42.8 | 1223.5 | 1266.3 | BWW | | AsI ₃ | 43.3 | 1223.1 | 1266.4 | BWW | | MeAsI ₂ | 43.3 | 1222.5 | 1265.8 | BWW | | As ₂ S ₃ | 43.3 | 1222.2 | 1265.5 | BWW | | As ₄ S ₄ | 42.9 | 1222.9 | 1265.8 | BWW | | Ph ₃ As | 42.2 | 1221.3 | 1263.5 | BWW | | Ph₃AsS | 43.9 | 1220.2 | 1264.1 | BWW | | Me₃AsS | 43.8 | 1219.5 | 1263.3 | BWW | | AsBr₃ | 45.1 | 1218.3 | 1263.4 | BWW | | As ₂ O ₃ | 44.2 | 1219.1 | 1263.3 | BWW | | As ₂ O ₃ | 44.8 | 1219.0 | 1263.8 | W1 | | As ₂ O ₅ | 46.0 | 1217.6 | 1263.6 | BWW | | NaAsO ₂ | 44.0 | 1219.6 | 1263.6 | W1 | | Na₂HAsO₄ | 45.3 | 1217.3 | 1262.6 | W1 | | Ph₃AsO* | 44.1 | 1219.7 | 1263.8 | BWW | | Ph₂AsO(OH)* | 44.2 | 1219.2 | 1263.4 | BWW | | PhAsO(OH) ₂ * | 45.0 | 1218.6 | 1263.6 | BWW | | BuAsO(OH)2* | 44.9 | 1218.5 | 1263.4 | BWW | | (C ₁₀ H ₂₁) ₂ AsO(OH) | 43.8 | 1219.2 | 1263.0 | BWW | | Me₂AsO(OH) | 44.4 | 1218.6 | 1263.0 | BWW | | KAsF ₆ ^{a)} | 47.6 | 1214.0 | 1261.6 | W1 | c) CdO believed hydrated. #### Silver, Ag Atomic 47 | Compound | 3d _{5/2} | $M_4N_{45}N_{45}$ | $\alpha + \mathbf{h}v$ | Ref. | |---------------------------------|-------------------|---------------------|------------------------|------| | Ag | 367.9 | 358.1 | 726.0 | Φ | | Ag* | 368.0 | 358.4 | 726.4 | W3 | | Ag* | 368.1 | 358.2 | 726.3 | S2 | | Ag* | 368.0 | 357.8 ^{b)} | 725.8 | GW | | Ag* | 367.9 | 358.0 | 725.9 | FKW | | AlAg ₂ | 368.4 | 358.0 | 726.4 | FKW | | Ag₂Õ | 367.6 | 356.9 ^{b)} | 724.5 | GW | | Ag₂O | 367.7 | 356.8 | 724.5 | S2 | | AgO | 367.2 | 356.8 ^{b)} | 724.0 | GW | | AgO | 367.4 | 357.4 | 724.8 | S2 | | AgO | 367.8 | 355.7 | 723.5 | W1 | | Agl | 367.8 | 356.3 ^{b)} | 724.1 | GW | | AgOOCCF ₃ | 368.6 | 355.3 | 723.9 | W3 | | Ag ₂ SO ₄ | 368.1 | 354.4 | 722.5 | W3 | | Ag ₂ SO ₄ | 367.7 | 355.3 ^{b)} | 723.0 | GW | | AgF | 367.5 | 355.5 ^{b)} | 723.0 | GW | | AğF ₂ | 367.1 | 355.8 ^{b)} | 722.9 | GW | ### Cadmium, Cd Atomic 48 | Compound | 3d _{5/2} | $M_4N_{45}N_{45}$ | $\alpha + hv$ | Ref. | |-----------------------------------|-------------------|---------------------|---------------|------| | Cd | 404.8 | 383.9 | 788.7 | Φ | | Cd* | 404.7 | 383.9 | 788.6 | W3 | | Cd* | 404.7 | 384.2 ^{b)} | 788.9 | GW | | CdTe | 404.8 | 382.7 ^{b)} | 787.5 | GW | | CdSe | 405.1 | 381.7 ^{b)} | 786.8 | GW | | CdS | 405.1 | 381.4 ^{b)} | 786.5 | GW | | Cdl ₂ | 405.2 | 381.3 ^{b)} | 786.5 | GW | | CdÔ | 404.0 | 382.5 ^{b)} | 786.5 | GW | | Cd(OH) ₂ ^{c)} | 404.9 | 380.2 | 785.1 | W1 | | CdF, | 405.7 | 379.1 ^{b)} | 784.8 | GW | | CdF2 | 405.6 | 379.0 | 784.6 | W3 | ^{*}Omitted from plot because of crowding a) Displayed at edge of chart at proper Auger parameter, although true point is off chart. b) 6.0eV added to kinetic energy data on M_sN₄₅N₄₅ to obtain kinetic energy of M₄N₄₅N₄₅ line. # Indium, In Atomic 49 | Compound | 3d _{5/2} | $M_4N_{45}N_{45}$ | $\alpha + hv$ | Ref. | |--------------------------------|-------------------|-------------------|---------------|------| | 111 | 443.6 | 410.6 | 854.2 | Φ | | In | 444.0 | 410.6 | 854.6 | W3 | | ' In | 443.6 | 410.9 | 854.5 | LAK | | InTe | 444.1 | 409.4 | 853.5 | W1 | | In₂Te₃ | 444.3 | 409.1 | 853.4 | W1 | | InSe | 444.8 | 408.2 | 853.0 | W1 | | In₂Se₃ | 444.6 | 408.5 | 853.1 | W1 | | InS | 444.3 | 408.5 | 852.8 | W1 | | In ₂ S ₃ | 444.5 | 407.5 | 852.0 | W3 | | Inl_3 | 445.6 | 406.0 | 851.6 | W3 | | InBr ₃ | 445,8 | 405.0 | 850.8 | W3 | | InCl | 444.6 | 405.9 | 850.5 | W3 | | InCl ₃ | 445.8 | 404.8 | 850.6 | W3 | | In ₂ O | 444.1 | 407.0 | 851.1 | W3 | | In_2O_3 | 444.7 | 406.9 | 851.6 | LAK | | In ₂ O ₃ | 444.1 | 406.6 | 850.7 | W3 | | In ox | 445.3 | 406.4 | 851.7 | W2 | | In(OH) ₃ | 444.8 | 405.2 | 850.0 | W1 | | InF ₃ | 445.8 | 404.2 | 850.0 | W3 | | (NH₄)₃InF ₆ | 445.4 | 404.3 | 849.7 | W3 | # Tellurium, Te Atomic 52 | Compound | $3d_{5/2}$ | $M_4N_{45}N_{45}$ | $\alpha + hv$ | Ref. | |--|------------|-------------------|---------------|------| | Te | 572.7 | 492.4 | 1065.1 | Φ | | Te | 573.2 | 491.7 | 1064.9 | W3 | | Te | 572.9 | 492.0 | 1064.9 | BWI | | Ph ₂ Te ₂ | 573.7 | 498.7 | 1062.4 | BWI | | PhTel ₃ | 575.6 | 498.4 | 1064.0 | BWI | | Ph ₂ TeI ₂ | 575.2 | 497.8 | 1062.9 | BWI | | Et ₂ TeI ₂ | 575.1 | 497.8 | 1062.9 | BWI | | Me ₂ Tel ₂ * | 575.4 | 497.8 | 1063.2 | BWI | | TeBr₄ | 576.5 | 497.5 | 1064.0 | BWI | | PhTeBr ₃ | 576.4 | 497.0 | 1063.4 | BWI | | R+Br ^{- a)} | 575.0 | 497.3 | 1062.3 | BWI | | (FC ₆ H ₄)TeBr ₃ * | 576.1 | 497.2 | 1063.3 | BWI | | MeC ₆ H ₄ TeBr ₂ * | 575.8 | 496.8 | 1062.6 | BWI | | BuTeBr ₃ * | 576.4 | 496.7 | 1063.1 | BWI | | Ph₂TeBr₂* | 576.0 | 496.9 | 1062.9 | BWI | | TeO ₂ | 575.9 | 497.3 | 1063.2 | BWI | | TeO ₃ | 577.1 | 495.7 | 1062.8 | BWI | | Te(OH) ₆ | 576.5 | 495.7 | 1062.2 | BWI | | Te ox* | 576.9 | 496.5 | 1063.4 | W3 | | Na₂TeO₄ | 576.6 | 496.5 | 1063.1 | W3 | | TeCl₄ | 576.7 | 496.3 | 1063.0 | BWI | | Ph ₂ TeCl ₂ | 576.0 | 496.5 | 1062.5 | BWI | | (p-MeOC ₆ H ₄)TeCl ₃ | 576.5 | 496.1 | 1062.6 | BWI | | Te tu ₂ Cl ₂ | 574.1 | 498.9 | 1063.0 | BWI | | Te tu tm CI* | 576.1 | 496.8 | 1062.9 | BWI | | (NH₄)₂TeCl ₆ * | 576.3 | 497.0 | 1063.3 | BWI | | (p-MeC ₆ H₄)TeOOH | 575.9 | 496.8 | 1062.7 | BWI | ^{*}Omitted from plot because of crowding a) R = (PhTe ()