
Hartree – Fock Method and Koopman’s Theorem



Ψtot(N) = Ψtot(r1, σ1, r2, σ2 …. rN σN;   R1, R2 … RP)

Nuclear coordinates can be neglected in the resolution scale of electron
spectroscopy. In the non-relativistic limit, the Hamiltonian in electrostatic units,
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M – electron mass, Zl charge of lth nucleus ril = |ri – Rl|, rij =|rj – rj|,
Rlm = |Rl – Rm|,  Ml – mass of lth nucleus.

To this relativistic effects may be added by perturbation. Hamiltonian
most often added is due to spin-orbit splitting.



The total wave function must satisfy the time independent 
Schroedinger equation,

ĤtotΨtot(N) = Etot(N) Ψtot(N)

Bohn-oppenheimer approximation permits separation of the total 
wave function into a product of electronic and nuclear parts.

Ψtot(r1 …. rN; R1 …. Rp) = Ψ(r1, σ1 … rN σN) Ψnuc(R1…Rp)

Ψ(N), the electronic wave function depends on R1 … RP only 
parametrically through nuclear-nuclear coulombic repulsion.



The electronic Hamiltonian will be Ĥtot minus the nuclear kinetic term.

(Ĥtot + ħ2/2 Σl=1
P ▼ l

2/Ml) Ψ(N) ≡ Ĥ(N) Ψ(N) = E(N) Ψ(N)

Ĥtot can be include S-O effects. The total energy

Etot = E + Enuc

= E + Evib + Etot + Etrans+ ….

The quantum number K (representing nuclear motion) should 
represent all forms of motion, vibrational, rotational,.

For diatomic harmonic oscillator,
Evib = ħνvib(v + ½)
v = 0, 1, 2, ….



Translational motions of the atom or molecule can influence the
energies in two ways.

1. Conservation of linear momentum requires
Phν +  0 = Pf + Pr
Phν → Photon momentum hν/c, momentum of Ei taken to be zero. 
Pf → photoelectron momentum, Pr recoil momentum of the atom.

Recoil energy of two atom vary as Er = P2/2m and increases with
decreasing at. no. For Al Kα, the Er value for various elements are, 
H – 0.9 eV, Li – 0.1 eV, Na –0.04 eV, K – 0.02 eV Rb – 0.01 eV.

Therefore, this is important only in H, as far as XPS in concerned
XPS instrumental line widths are 0.4 – 0.9 eV. Thus Er can be 
neglected.



2. Doppler broadening can be significant.

Thermal motion of emitters.
If the atom of mass M moves with a centre of mass velocity V, the
electron kinetic energy
Ekin

” = (½) m |ν - V|2

The measured Ekin = (½)mν2 will be different from this. The difference
depends on thermal velocities. If the mean kinetic energy measured
is Ekin, the Doppler width, ΔEd

= 0.723 x 10-3 (T. Ekin/M)1/2  (in eV)

Ekin refers to the average kinetic energy of the ion.

At room temperature, for XPS energy of 1000 eV, the value of 
ΔEd  ≤ 0.1 eV for M ≥ 10. Thus it is not significant in comparison 
with FWHM. But important in gas phase.



Normally it is a practice to neglect nuclear motion.

The N and N – 1 electron states represent the various irreducible
representations of the point group.

In atoms where spin-orbit splitting is small, the states are specified by 
L, S and perhaps also ML and MS. ML and Ms are z components of L 
and S. For zero spin orbit splitting, energies depend only on L and S.
and the degeneracies would be (2L + 1) (2S + 1). Such states also
occur in molecules, but they are seldom used. 



Ψ(N) is approximated as a single Slater determinant Φ of N orthogonal
one electron spin-orbitals. 

One electron orbital φi = φi(r) χi (σ)
χi(σ) = α(ms = +1/2) or β (ms = -1/2)

The orthogonality relations are,
∫φ*i(r) φj(r) dt ≡ <φi|φj> = δ ij
∫χi*(σ) χj(σ) dt ≡ <χi | χj> = δ msi,msj = {1 for α α or β β

0 for α β or β α

Ψ≈ Φ = 1/√N!  φ1(1)χ1(1) φ2(1) χ2(1) … φN-1(1) χN-1(1) φN(1)χN(1)
φ1(2)χ1(2) φ2(2) χ2(2) … φN-1(2) χN-1(2) φN(2)χN(2)
……………………………………………………

1 …. N label the space and spin co-ordinates of each orbital



φnlml(r, θ, φ) = Rnl(r)          Ylmi(θ, φ)

radial part     Angular parat
Spherical harmonics

In molecules the symmetry types such as 1σ, 3πg arise.

Orbitals are approximated as linear combinations of atomic orbitals.

In solids, translational periodicity requires that delocalised orbitals 
are of Bloch-type

φk(r) = uk(r) exp(i k . r) 

K is the wave vector of the lattice and nk(r) is a function characteristic 
of φk which has the same translational periodicity as the lattice.



A free electron will have a constant uk(r) and will yield,

φk(r) = C exp(i k..r)

C is a normalisation constant.

The momentum P and energy E are,
P = ħk
E = Ekin= P2/2m = ħk2/2m

The Hamiltonian can be used with variational principle to find 
optimum φ, So that the total energy E = < φ|Ĥ|φ> is minimum. 

The Hartree – Fock equations are obtained this way.



We get Hartree-Fock equations.

The orbitals are assumed to have the symmetry of the molecule

HF equations are,

[-1/2 ▼1
2 - Σl=1

p Zl/r1l] φi(1) + [Σj=1
N ∫φj*(2) 1/r12 φj(2) dτ2] φi(1)

Kinetic  e-n attraction           e-e coulombic repulsion

-δmsi,msj Σj=1
N [∫ φj

*(2) 1/r12 φj(2) dτ 2] φj(1) = εi φi(1)     i = 1, 2, …N
e-e exchange    

ε i’s are the one electron orbital energies. 

Exchange interaction is possible only for electron with parallel spins. (αα
or ββ). Kronecker delta allows this.

This equation expressed in terms of Fock operators,



F(1)φi(1) = [-1/2 ▼1
2 -Σl=1

P Zl/r1l + Σj = 1
N [Ĵj - δmsi, msj Kj] φi(1) = ∈i φi(1)

The Coulomb and exchange operators Ĵj and Kj are

Ĵjφi(1) = ∫φj
*(2) 1/r12 φi(2) φi(1) dt2

Kj φI(1) = ∫ φj
*(2) 1/r12 φi(2) φj(2) dt2

The coulomb and exchange integrals are,

Jij = < φi(1)| Ĵj | φj(1)> = ∫ ∫ φi
*(1) φj

*(2) 1/r12 φi(1) φj(2) dt1 dt2

Kij = < φi(1)| Ĵj| φi(1)> = ∫ ∫ φi
*(1) φj

*(2) 1/r12 φi(2) φj(1) dt1 dt2

Thus Jij = Jji, Kij = Kji Jii = Kii

Once the SCF is performed, the orbital  energies can be obtained from



These equations in the diagonal form are,
∈i = ∈i

0 + Σj = 1
N (Jij - δmsi,msj kij)



∈i
0 is the expectation value of the one-electron operator for kinetic

energy and electron – nuclear attraction.

∈i
0 =  <φi(1) | [-1/2 ▼1

2 - Σl=1
p Zl/r1l] φi(1)>

The total energy is given by,

E = < φ|Ĥ|φ> = Σi=1
N ∈i

0 + Σi=1
N Σj>i

N(Jij - δmsi,msj kij) + Σl=1
p Σm>l ZlZm/rlm

Measured total energy is not the sum of orbital energies.

The best H-F method of determining the binding energy is to compute 
The energy difference between Ef(N-1,k) and Ei(N) corresponding to
Ψf

(N-1, k) and Ψi(N). Since electron emission is faster (10-16 sec) than 
nuclear coordinates can be identical in both the states, therefore 
nuclear-nuclear repulsion cancell each other. The ionic state potential
minimum, however, may have different nuclear coordinates and
Therefore, vibrational excitations are possible.



Studies show that core hole is not delocalised.  
An LCAO HF calculation gives +1/2e charge on each σg1s and σg1s 
for a 1s hole.
But the energy state is not the minimum.  That corresponds to the state 
for which 1s hole is localised on 1 atom.

For valence states delocalisation may be involved.  Some orbitals  
such as non-bonding orbitals are essentially atomic and 
electron emission can be assumed to lead to localised hole states.

To avoid difficulties associated with hole state calculation, 
Koopmans’ approximation is used. The assumption is that the initial 
one electron orbitals φi

s making up the, ΦI(N) state is the same 
as the final orbitals φi

’s making up the Φf(N – 1, k). state. 
The energy for Ef(N-1, K) can be calculated from Ei(N) by eliminating k 
state occupancy



If these excitations are fast compared to the motions of remaining N-1 
electrons (called sudden approximation) different excited states
can be reached. Due to excitation, The remaining N-1 electrons 
will not have the same spatial distribution.  

The spatial form may not change much but the calculated BEs
can change greatly. The relaxation effects can be important. 
Relativistic Correction - orbital velocity/c

Correlation correction is taken in the form of pair correlation energies.  
For a Ne 1s hole correlation correction can be written,

δEcorr = ∈(1sα, 1sβ) + ∈(1sα, 2sα) + ∈(1sα, 2sα) + 3∈(1sα, 2pβ) + 
3∈ (1sα, 2pα) + 3∈(1sα, 2pβ)

This is only a first approximation.  All types of correlation in Both 
Ne and Ne+ with a 1s hole will be a better estimate.



Ef
(N-1, k)

kT = Σi≠k
N ∈i

0 + Σi ≠k
N Σj>I, j≠k (Jij - δmsi,msj Kij)

This neglects nuclear repulsion.

= Σi≠k
N ∈i

0 + Σi=1
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Binding energy of the kth electron can be given by the 
difference method,

Eb
v(k)KT = Ef

(N-1, k)
KT – Ei(N)

= - ∈k
0 - Σi=1

N (Jik - δmsi,msk Kik)

Making use of the expression for ∈k

Eb
v(k)KT = -∈k



For occupied orbitals ∈k is –ve and Eb
v(k) is +ve. Since relaxation

and other effects are neglected, KT binding energies are lower than
theoretical estimates. The error due to relaxation δErelax > 0,

Eb
v(k) = Eb

v(k)KT - δErelax
= -ek - δErelax

This derivation of KT is valid only for closed shell systems represented 
say single Slater determinant with doubly occupied one-electron
orbitals or solids highly delocalised orbitals with quasi – continuous
energy eigen values.



In general for open shell systems there can be more than one way of 
compiling the angular moments and different final states result. For atoms 
there states can be described in terms of L and S. A linear combination of 
Slater determinants are needed.  But slater has shown that if average total 
energies of initial and final state are taken,

Eb
v(k)KT = Ef(k)KT – Ei(k) = -∈k

The best way to calculate δErelax is to carry out SCF calculations on initial and 
final states and compare the energy difference with ∈i.  

The binding energy can be approximated by,

Eb
v(k) = - ∈k - δErelax + δErelax + δEcorr



More accurate wave function and CI
N electron wave function is written in terms of linear combination of 
states determinates φj(N)

Ψ(N) = Σj cjΦj (N) 

For Ne → calculation with 1071 configuration.  
The coefficients are the following:
Φ1 -1s2 2s2 2p6 - 0.984
Φ2 - 1s2 2s1 2p6 3s1 - 0.005
Φ3 -1s2 2s2 2p5 3p - 0.009
Φ4 - 1s2 2s2 2p4 4p2 - 0.007 - 0.030
Φ5 -1s2 2s2 2p4 3p4p - 0.007 - 0.002  


