Troubleshooting X,Y,Z sensor/nulling error in ICON

Linghan Ye, Igor Titushkin, Yueming Hua

- The purpose of this document is to collect as many data as possible from customer, please provide all the data collected and send to Bruker service Engineers.

- Please refer to following the documents for additional troubleshooting details if you have fundamental questions:
 - NBSB0143_Scanner Closed-Loop Errors on NS5 Systems
 - TS guide Closed-loop Rev B_r
 - Stargate Scanner Troubleshooting Guide
 - NS-V controller troubleshooting procedure
 - NBSB0003 NS5 Diagnostic System Tool
 - NBSB0016 Testing the HV Board and Supply on NS5 and BIO-II Controllers
Error: x,y,z sensor does not work

Power cycle*

Yes → No issue

Yes → XYZ sensor software display works

Yes → Open loop scanning works

Yes → Drive voltage on Microscope works

No → Drive voltage in controller works

Yes → Issue with scanner

No → Issue with Ebox/cable

No → Issue with Ebox/Scanner

Yes → +/−15V in ebox works

No → XYZ sensor out voltages in ebox works

Yes → 6.5V voltage in ebox works

No → 6.5V voltage in ebox works

Yes → NSV self-diagnostic/power supply works

No → Issue with Ebox/cable

*Note: If customer has Fastcan head/ICON head, can do easy swap test to determine the root cause after power cycle.
Power cycle and check open loop

• First power cycle: close software>> controllers>> computer; then turn on computer>>controllers>>software and try to scan again

• Load contact/tapping mode, Put open loop(closed loop off), use Calibration grid sample to get a max scan size image, collect both height and height sensor chanel. save the image and send to support team

• Check if tip is moving normally in the video image
 1. If open loop works, check slides 4- 13
 2. If open loop can’t engage or the image is distorted, go to slides 16-22(check ICON scanner drive voltage). example of a distorted Open loop height image below:
• Load contact/Tapping mode, Withdraw the tip twice to lift the tip, make sure XY closed loop is off; put “Igain” “Pgain” to 0;
• Click on to menu Microscope>>>false engage;
• Set the Max scan size to 440V, scan angle 0 degree, open “X sensor channel”, set RT plane fit to “None” and OL plane fit to “None”, scan an image
• Right is a example of good x sensor image, take a screenshot and send yours to Bruce service team.
Measure the +X out in the e-box (false engage)

<table>
<thead>
<tr>
<th>Test Point</th>
<th>Reference</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1</td>
<td>+X OUT</td>
<td>+X sensor out signal</td>
</tr>
</tbody>
</table>

1. Find where the Strain gauge board located in ebox
2. Find where +X out on strain gauge board
3. Use Oscilloscope to measure, use AGND as ground

+X OUT 8~10 Vpp triangular wave
• Set the Max scan size to 440V, scan angle 90 degree, open Y sensor channel, set RT plane fit to “None” and OL plane fit to “None”, scan an image.
• Right is a example of good Y sensor image.
Measure the +Y out (false engage, 90°)

Use Oscilloscope to measure +Y out, use AGND as ground

| +Y OUT | 8~10 Vpp triangular wave |

Strain gauge interface board
• Still false engage, Change to “Ramp” mode
• Z closed loop off, trigger mode off
• Set ramp output to “Z”, Ramp Size to max, Data type to “height sensor” X data type “Z”, then click continuous ramp icon, screenshot the ramp data
• Above is a good example of Z sensor
Measure the +Z out/Z raw and use AGND as ground in ebox.
measure TP4 +6.5 V DC and others in ebox

Please measure the voltages in the table below and send to Bruker service

<table>
<thead>
<tr>
<th>Test point</th>
<th>Reference</th>
<th>function</th>
<th>Measurement condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP4</td>
<td>BRIDGE</td>
<td>+6.5V supply between BRIDGE(TP4) and AGND for head preamp board</td>
<td>With scanner connected</td>
</tr>
<tr>
<td>TP4</td>
<td>BRIDGE</td>
<td>+6.5V supply between BRIDGE(TP4) and AGND for head preamp board</td>
<td>Disconnect scanner cable from Microscope</td>
</tr>
<tr>
<td>TP9</td>
<td>-15V</td>
<td>-15V power supply in ebox</td>
<td>Disconnect scanner</td>
</tr>
<tr>
<td>TP14</td>
<td>+15V</td>
<td>+15V power supply in ebox</td>
<td>Disconnect scanner</td>
</tr>
<tr>
<td>TP12</td>
<td>+5V</td>
<td>+5V power supply in ebox</td>
<td>Disconnect scanner</td>
</tr>
<tr>
<td>CL connector</td>
<td>see picture in next slide</td>
<td>LEMO cable connector on the NSV controller</td>
<td>Disconnect scanner</td>
</tr>
</tbody>
</table>

Strain gauge interface board

![Strain gauge interface board image]
Check voltage on NS-5 CL connector

- 1: +5V
- 10: +15V
- 13: -15V

First please unplug the scanner, and check TP4 and TP14 in Ebox, see if now they reads correct voltage (+6.5V and +15V).
If still not, then check what is the voltage reading on the +15V pin on NS5 controller front panel, please see the pin layout in following slide.
If it reads abnormal, then the controller is the problem.
If it has correct +15V, then check the resistance of each wire in the close loop cable, they should be only a few ohms of resistance for each wire.
If the cable is confirmed good, then the problem is in the Ebox.
NS5Diagnostic Test

1. turn off all the controllers, computer can be on.
2. disconnect all the cables on front panel of NS5 controller
3. turn on the power of NS5 controller
4. Do NS5 diagnostics test, download below if can’t find in the D drive (D>> program files>>Bruker>>self diagnostic)
ftp://anonymous@sboftp.bruker-nano.com/outgoing/GPTech/Linghan/NS5DiagnosticSystemInstaller.zip

Follow: NBSB0003 NS5 Diagnostic System Tool
5. Need to restart this test if can’t run, usually takes 20 min.
6. If fail, test the power supply of the controller (NBSB0016) next slide
Check POWER SUPPLY in the NSV controller (NBSB0016)
open loop does not work tests
Test drive voltage on Microscope

- Unplug the scanner, and measure the piezo drive signal from microscope (procedure in next slide)
- Need to bypass I2C below.
- If old version software, add the bypass I2C line in system.par (for example 8.15);
- if it’s very old software, can’t add the bypass I2C, then no need to unplug the scanner, skip this test.

1. Bypass I2C:
 a. Close NanoScope software
 b. Go to folder: D:\Program Files\Nanoscope\8.15xxx
 c. Double click file “system.par”
 d. Set “\Bypass Faulty Scanner I2C: Yes”

![Figure 14. Bypass I2C in system.par](image)
1. Load contact mode, do “alt~”, go to “stage control”, turn crash protection off; Click “withdraw” twice
2. Click “scan”, set the “scan size” to 440V, “scan angle 0 degree”, “Closed loop off”, “Integral gain 0” and “Proportional gain 0”
3. Click the Miscoscope on the top menu>>> false engage
4. Measure the XYZ voltage shown above
5. If see a 440 V triangular wave, then issue with scanner; If not, go to the next test
6. Remember to put crash protection on when finish all the troubleshooting!!!!
Test drive voltage in controller when scanner is removed:

- Set Bypass I2C to yes
- alt ~, stage control; crash protection off
- Check controller
- Remember to put crash protection on once done!!!!
Test X drive voltage in controller

- Setup the oscilloscope to read properly. Put scan size 440 V, gain to 0, **closed loop off**,.
- Go to microscope menu in the software >> false engage
- Locate the HV_X test point on the in the controller. (All test points are shown next page)
Drive voltage test points for Controller (need to update right side controller picture)

<table>
<thead>
<tr>
<th>TEST POINT</th>
<th>REFERENCE VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1</td>
<td>HV X-</td>
</tr>
<tr>
<td>TP2</td>
<td>HV X+</td>
</tr>
<tr>
<td>TP3</td>
<td>HV Y-</td>
</tr>
<tr>
<td>TP4</td>
<td>HV Y+</td>
</tr>
<tr>
<td>TP5</td>
<td>HV Z-</td>
</tr>
<tr>
<td>TP6</td>
<td>HV Z+</td>
</tr>
</tbody>
</table>
- scan at 0Deg, scan size is 440V test HV_X: triangular waveform at 1HZ, image shown below

- Change scan angle to 90 Deg, scan size is 440V test HV_Y: triangular waveform at 1HZ, image shown below
Test Z drive voltage

• While still false engaged hit the ramp view in the left hand screen. Change the ramp parameter list as shown

• Click the continuous curves button.

• Use the oscilloscope to test HV_Z+ test point.

• 330V triangular waveform on the HV test points.
Z voltage, HV_Z-(HV+Z has no voltage)