

Getting Started with EC-Lab[®]: CV: Cyclic Voltammetry

The aim of this presentation is to guide you to set the appropriate parameters to perform a CV measurement.

Only CV technique will be discussed hereafter but the information given in the presentation can be adapted to CVA, LP, MP techniques.

PROCEDURE

- 1. Insert the CV technique
- 2. Insert other(s) technique(s) if needed
- 3. Set the « Advanced Setting » tab
- 4. Set the « Cell Characteristics » tab
- 5. Set CV technique
- 6. Start the experiment

NOTE:

BioLogic Science Instruments

It is assumed that the computer and the instruments are connected. This is explained in the Getting Started named "EC-Lab[®]: Connection to the instrument(s) & Channel(s) selection"

1- Insert the CV technique

In the experiment frame, click on the
 button to insert the new
 technique

Bio**Logic** Science Instruments

Bio**Logic**

1- Insert the CV technique

• Select "Cyclic Voltammetry – CV" technique available in the "Voltamperometric Techniques" folder. The technique is highlighted in blue when selected

• Click on the "OK" button

2- Insert other(s) technique(s)

• Click on the 🛨 button to insert any additional technique(s).

Bio**Logic**

Science Instruments

Note: it is possible to remove a technique or to move a technique before or after. First select the technique that you want to remove/move (the technique will be highlighted in blue) and then click on the appropriate button.

- 🖶 To add
- To remove
- To move before
- 👌 To move after

3- Set the « Advanced Setting » tab

Click on the

Advanced Settings tab.

Then the « Advanced Settings » window is shown

Bio**Logic**

Science Instruments

The most important parameters to set for CV experiment is the « Filtering » and « Ultra Low current » correction block, only available for SP-300 family.

Data can be filtered afterwards bv software.

NOTE:

This window is different for the VMP3 family and for the SP-300 family.

VMP3 family:

SP-50, SP-150, VSP, VMP3, CLB-500, CLB-2000, HCP-803, HCP-1005

SP-300 family:

SP-200, SP-240, SP-300, VSP-300

VIMP3 family	SP-300 family
Compliance Modify on disconnected cells only ! Ewe from $\cdot 10 \lor$ 10 \lor Ece from $\cdot 10 \lor$ 10 \lor Ece from $\cdot 10 \lor$ 10 \lor More information >> Safety Limits Ewe min = 0.00 \lor Ewe min = 0.00 \lor III = 0.000 mA DQ-Qol = 0.00 mA DQ-Qol = 0.00 mA Analog IN 1 max \checkmark = 0.00 \lor E stack slave max = 0.00 \lor E stack slave max = 0.00 \lor E tack slave min = 0.00 \lor Electrodes Connection Modify on disconnected cells only ! standard \checkmark Electrodes Connection Modify on disconnected cells only ! standard \checkmark Electrodes Connection Modify on disconnected cells only !	SP-300 family Filtering Ewe, I 50 kHz Safety Limits Safety Limits Ewe max = 0.00 V Ewe max = 0.00 V Ewe min = 0.00 V III = 0.000 mA.h Analog IN 1 max \checkmark = 0.00 V Analog IN 2 max \checkmark = 0.00 V for t > 10 ms Channel Channel Electrodes Connection Modify on disconnected cells only! Standard S1 Eve Filter I S2 Eve Filter I S2 Eve Filter I S3 Eve Filter I S3 Eve Filter I S3 Eve Filter I S4 Eve Filter I S5 Eve Filter I
Electrodes Connection Modify on disconnected cells only ! standard WE/CA2 ref1 RE/ref2	standard P1 S2 Ewe REF CE CE
Ece ref3 CE/CA1 Miscellaneous Text export Filter Y Edit	Miscellaneous Text export Filter Filter Edit Smooth on Create one data file per loop (linked techniques only)
Create one data file per loop (linked techniques only)	Default
Default	

SP-300 family

Ultra Low Current Option

High speed scan

Definition of high speed value depends on the current range used.

SP-300 family

Filtering

Three analog filters are offered: 50 kHz, 1 kHz and 5 Hz. Select the 5Hz-filter to remove the aliasing from external perturbation (50 or 60 Hz depending on the country).

Ultra Low current (only available if ULC cable is connected to the

potentiostat)

This option has to be ticked if the user works at very low level of current and at high scan rate.

4- Set the « Cell Characteristics » tab

Click on the

Cell Characteristics tab.

»

Then the « Cell Characteristics window is displayed.

Bio**Logic**

Science Instruments

• Information about the cell and some comments.

• Electrode surface area has to be set if the user want to work with current density (mA/cm²) instead of current (mA).

© EC-Lab V10.21 - [SP-2-	40 -				- 7 ×
Experiment Edit View Graph		iption			_ @ ×
Image: Contract of the second secon		e material			
+ - \$ =	🔤 🛛 Initial stat	te			
SP-240 - virtual VSP-300 - 239 See	Electrolyt	e			
to v Reverse	scan to Comment	ts			
Advanced Settings	asure <] ⊳averaç				
Cell Characteristics					
Parameters Settings					
	Electrode	surface area 0.0	01 cm² 🗸		
		, Anti- and loo	~		
	Lharacte	ristic mass JU.U	U1 g 🚩		
Force	(4000 points per cycle)				
Status Reduction Time 0.08:57	Ewe -14.531 mV I -0.031 µA	Buffer 13 Eoc 0.295 mV	Q-Qo 11 P 100 nA r	nc 6 IRange .	cycle .

NOTE: All these infomation are stored in the data file

5- Set the CV technique

 Click on the Parameters Settings tab or directly on the technique CV in the list of technique. The technique is highlighted in blue.

Bio**Logic**

Science Instruments

- Three different blocks compose the CV technique (described in the next slides):
- In the first block , the initial potential is defined.
- In the second block, the voltage sweep and the recording conditions are defined.
- In the third block, the final potential is **TIP:** defined. It can be deactivated

If the user would like to set a conditioning period before starting the voltage ramp, he has to set a CA technique before the CV or use the CVA technique.

NOTE:

Getting Started: CV

All the settings may be changed during the experiment (except Irange, Erange, bandwidth).

5- Set the CV technique

Turn to OCV between techniques J						
<u>Set E_{we} to E_i =</u>	0.000 V vs. Eoc 💌					
<u>Scan E_{we} with</u> dE/dt =	20.000 mV/s					
to vertex potential E1 =	1.000 V vs. Ref 💌					
<u>Reverse scan</u> to vertex E ₂ =	-1.000 V vs. Ref 🗸					
<u>Repeat</u> n _C =	0 time(s)					
Measure <i> over the last</i>	50 % of the step duration					
<u>Record <l< u="">> averaged over N =</l<></u>	10 voltage steps					
E Range =	-2.5V; 2.5V 🗸 🛄					
	Resolution = 100 µV					
Range =	Auto 🗸					
Bandwidth =	7 🗸					
✓ End scan to E _f =	0.000 V vs. Eoc 💌					
(dE/dt ~ 100 μV / 5.0 ms) (dEN ~ 1.0 mV) (4000 points per cucle)						

Bio**Logic**

Science Instruments

Defines the potential at which the voltage sweep starts. This can be defined *versus* several voltage reference.

_			
VS.	Eoc	*	
	Ref		
U/s	Ectrl		
	Emeas		

Ref (the potential of the reference electrode)
Eoc (Open circuit voltage)
Ectrl (potential of the previous controlled voltage, if a technique is set before the CV)
Emeas (potential of the previous measured voltage, if a technique is set before the CV)

TIP:

Set 0 V vs **Eoc** to avoid a current jump at the beginning of the CV.

Bio**Logic**

5- Set the CV technique

Turn to OCV between techniqu	les Л				
<u>Set E_{we} to</u> E _i =	0.000 V vs. Eoc 💙				
Scan Euro with dE/dt =	20.000 mV/s				
to vertex potential $E_1 =$	1.000 V vs. Ref 🗸				
<u>Reverse scan</u> to vertex E₂ =	-1.000 V vs. Ref 💌				
<u>Repeat</u> n _c =	0 time(s)				
<u>Measure <i></i></u> over the last <u>Record <i></i></u> averaged over N =	50 % of the step duration 10 voltage steps				
E Range =	-2.5V; 2.5V 💉 Resolution = 100 µV				
I Range = Bandwidth =	Auto 💙 7 💙				
✓ End scan to E _f =	0.000 V vs. Eoc 💌				
(dE/dt ~ 100 μV / 5.0 ms) Force E1 / E2 (dEN ~ 1.0 mV) (4000 points per cycle)					

• Defines the scan rate and vertex potentials (E₁ and E₂). It is possible to define vertex potential versus several references (more info in the previous slide).

The voltage Ei, E1, E2 Ef have to be in the Erange. The latter can be modified by or buttons. [-2.5; 2.5] V range is adapted to the electroactivity window of most of the electrolytes.

It is also possible to cycle between E_1 and E_2 several times. This is the « Repeat » box n_c .

TIP:

Better to set E_1 and E_2 vs Eref, OCV may change whereas Eref is absolute potential values .

Bio**Logic**

5- Set the CV technique

• defines how the instrument samples during the CV technique.

The first parameter define when the current is measured for each voltage step. Actually, to perform a ramp of potential, the potentiostat applies several voltage steps (discrete behavior, not analog).

The second one allows you to get a smoother data, it is recommended to use N = 10. Current given is an value diof the current averaged on 10 voltage steps.

TIP:

The dE (step voltage) is dependent on potential resolution which is dependent on the Erange. So to get an optimized CV, Erange has to be as narrow as possible.

For information, the actual step duration (dt) and voltage step (dE) are indicated at the bottom of the technique.

Turn to OCV between techniques					
<u>Set E_{we} to E_i =</u>	0.000 V vs. Eoc 🗸				
<u>Scan E_{we} with</u> dE/dt =	20.000 mV/s				
to vertex potential E1 =	1.000 V vs. Ref 🗸				
Reverse scan to vertex E2 =	1 000 V vs. Bef 💙				
Beneat n					
<u>ricpeat</u> iic -					
Measure <i> over the last</i>	50 % of the step duration				
<u>Record <l></l></u> averaged over N =	10 voltage steps				
E Range =	-2.5V; 2.5V 💙 🛄				
	Banakdian - 100 ult				
Range =	Auto 🗸				
Bandwidth =	7 🗸				
✓ End scan to E _f =	0.000 V vs. Eoc 💌				
(dE/dt * Force E1 / E2 (dEN ~ (4000 c	~ 100 μV / 5.0 ms) 1.0 mV) points per cycle)				

Irange is the range of expected current. It is possible to set autorange.

TIP:

For high scan rate. It is recommended to set a fixed Irange because the Irange shift duration may be no more negligible.

BioLogic Science Instruments

5- Set the CV technique

Turn to OCV between techniques
Set Ewe to Ei = 0.000 V vs. Eoc 🗸
<u>Scan E_{we} with dE/dt = 20.000</u> mV/s
to vertex potential E1 = 1.000 V vs. Ref 💌
Reverse scan to vertex E2 = .1.000 V vs. Ref 🗸
Repeat nc = 0 time(s)
Measure (1) over the last 50 % of the step duration
Becord $\langle L \rangle$ averaged over N = 10 voltage steps
E Range = -2.5 V; 2.5 V 🛛 👽 🛄
Resolution = 100 µV
I Range = Auto
Bandwidth = 7
✓ Endiscan to Ef = 0.000 V vs. Eoc ▼
(dE/dt ~ 100 μV / 5.0 ms) (dEN ~ 1.0 mV) (4000 points per cycle)

defines the stability/speed of the instrument. Set fast bandwidth for high scan rate above 200 mV/s. Bd 7 for VMP3 family and Bd 9 for SP-300 family.
(See manuals and application notes for more information on the bandwidths).

NOTE:

the bandwidth of the VMP3 family and the bandwidth of SP-300 family are not identical. Bandwidth 7 of VMP3 is different from the bandwidth 7 of the SP-300.

Bio**Logic**

Science Instruments

6- Start the experiment

		© EC-Lab V10.21	- [SP-240 - virtual, channel 1 - experiment:	<no name=""> - technique:</no>	Cyclic Voltammetry	1	_ 2 🛛
•	Click on 🤜 button to check if the	Experiment Edit Vie	aw Graph Analysis <u>T</u> ools <u>C</u> onfig <u>W</u> indows <u>H</u> elp				- 8 ×
		j 📧 🐸 😂 📾 🕴 1	2			Change at 1	
	settings are accepted	🔶 🗕 🖏 🥅 📾			Selector		
	- · ·		Set Ewe to E = 0.000 V Vt. Eoc V				
		• VSP-300 - 239	Scan Ewe with dE/dt = 20.000 mV/s				
•	Some warning messages may come up.		to vertex potential E1 = 1.000 V vs. Ref V				
			Repeat nc = 0 time(s)				
	FC-Lab	Experiment	Measure <i> over the last 50 % of the step duration</i>				
		Advanced Settings	Record <l> averaged over N = 10 voltage steps</l>				
	• Accept the modifications for channel 1.2	Cell Characteristics	E Range = -2.5 V; 2.5 V ·				
			I Range = Auto				
	Technique : CV	+ + -•	Bandwidth = 7				
			V Endscap to Ef = 0.000 V vs. Eoc. v				
	Ewe, I filtering : 50 kHz		(dE/dt ~ 100 uV / 50 ms)				
	Grounded Electrode connection : standard		Force E1 / E2 (dEN ~ 1.0 mV) (4000 points per cycle)				
	Safety Limits : none						
		A TT AT ANT					
	Vec No						
	Do not show this massage again						
•	Click on the 🕨 button to start the						
	experiment						
	скрепписии.						
		Status Reduction Time	0.08:57 Ewe -14.531 mV I -0.031 µA Buffer 13 Eoc 0.	295 mV Q-Qo 11 P 100 nA	nc 6 IRange .	cycle .	
		SP-240 off line	Channel I 📺 Modily mode 😽	0,0	U D/S		

It is possible to stop, pause, go to next sequence, go to next technique by clicking on the buttons
 If N N

Bio**Logic** Science Instruments

Few additional tips

 Ohmic drop can be compensated.
 For this, used one of the techniques available in the « Ohmic Drop determination » folder.

BioLogic

Science Instruments

• Troubleshooting.

In some case, when the compliance is not wide enough . Compliance needed can be checked by selecting Ece measurement in the « Cell characteristics ».

The compliance can be adjusted in the « advanced settings » only available for VMP3 family

Record		- C
Ece/V	WE/CA2	
P/W		
Analog IN 1/V	BE/ref2	
Analog IN 2/V	Ecel L	
Record external devices on Analog IN#	ref3	
	CE/CA1	
Files		

It is easy to diagnose this kind of trouble by plotting the Econtrol (ramp of potential applied by the potential) and Ewe (measure dpotential) *vs* time. Ewe has to follow the control. If not, compliance or cell geometry has to be modified.

* control vs. time * Ewe vs. time