An Introduction to Electrochemical Impedance Spectroscopy (EIS)

C. Reece

Excellent references:

Jefferson Lab

"Identification of Electrochemical Processes by Frequency Response Analysis" http://www.solartronanalytical.com/technicalsupport/technicalnotes/technote04.htm

"Basics of Electrochemical Impedance Spectroscopy" http://www.gamry.com/App_Notes/EIS_Primer/EIS_Primer_2007.pdf

Impedance Spectroscopy: Theory, Experiment, and Applications E. Barsoukov and J. R. Macdonald, Eds., Wiley-Interscience, 2005.

Basics

Jefferson Lab

- > We are interested in what happens at the interface between an SRF surface and a reactive media.
 - Chemical etching may occur spontaneously without electrical potential.
 - Addition of an <u>externally-defined potential</u> changes the dynamics of chemical reactions at the surface.
 - Such changes in the electrochemical dynamics at an interface are <u>extremely nonlinear</u>.
 - > We need appropriate process characterization tools.

- For <u>diagnostic purposes</u>, we want to characterize changes at a surface under specific system parameters.
- For <u>application purposes</u>, we want to tailor system parameters in order to obtain a desirable effect on a surface.
- ➢ EIS is a tool that bridges both purposes.
- EIS is a perturbative characterization of the dynamics of an electrochemical process.
 - > A tool for unraveling complex non-linear processes.

- Exploit Faraday's Law to <u>characterize a</u> <u>chemical process in terms of electrical</u> <u>measurements</u>.
- Electrochemical impedance is the response of an electrochemical system (cell) to an applied potential.
 - The frequency dependence of this impedance can reveal underlying chemical processes.

- > The response of electrochemical systems is <u>very</u> nonlinear.
- > We interrogate the impedance in a perturbative manner:
 - Small amplitude (~10 mV) AC ripple on top of the controlled DC polarization potential.
- The complex response of the system is usually displayed in Nyquist format, with the reactance inverted (since such systems are inherently capacitive).

Complex plane impedance spectrum - series resistance, capacitance - Complex plane impedance spectrum - parallel resistance, capacitance

- The response of the system as a function of the perturbation frequency can reveal internal dynamics.
- The <u>capacitance</u> at the metal/electrolyte interface always plays an important role.

Jefferson Lab

A process that depends on <u>diffusion</u> of reactants toward or away from the surface has a particular low-frequency character. ("Warburg" impedance)

Example: Anodic corrosion of <u>iron in sulfuric acid</u>

Electrochemical Impedance Spectroscopy

Jefferson Lab

- EIS is widely used as a standard characterization technique for many material systems and applications (corrosion, plating, batteries, fuel cells, etc.)
- PC-based modern DSP electronics+software packages now replace lock-in amplifier techniques for implementing EIS.

Gamry Instr. G 300

Example of EIS of niobium electropolishing with a particular parameter set.

See H. Tian's talk for more data and interpretation

Using Electrochemical Impedance Spectroscopy

EIS has been helpful for discerning the mechanism involved with electropolishing niobium.

Journal of The Electrochemical Society, 155 (9) D563-D568 (2008) 0013-4651/2008/155(9)/D563/6/\$23.00 © The Electrochemical Society

Jefferson Lab

The Mechanism of Electropolishing of Niobium in Hydrofluoric–Sulfuric Acid Electrolyte

Hui Tian,^{a,b} Sean G. Corcoran,^c Charles E. Reece,^b and Michael J. Kelley^{a,b,z}

^aApplied Science Department, College of William and Mary, Williamsburg, Virginia 23187-8795, USA ^bThomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA ^cMaterials Science & Engineering Department, Virginia Tech, Blacksburg, Virginia 24061, USA

- EIS may also be useful as an EP process characterization tool that aids in surface optimization and quality control.
 - Protocol development for engineered surface topography
 - On-line process feedback

