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A numerical simulation has been developed to extract the optical con- 
stants from experimental spectra. In particular, transmission, internal 
reflection, and external reflection spectra can be simulated for any in- 
cident angle, polarization, and sample thickness. The simulation is used 
here to determine the optical constants of two materials and to illustrate 
differences in spectral features that arise from variations in experimental 
conditions. Other potential applications of this method include deter- 
mining film thicknesses from experimental data, selecting the best spec- 
troscopic technique for a particular sample, and cross-referencing spec- 
troscopic techniques. 
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Transmission; Numerical simulations; Optical constants. 

INTRODUCTION 

Optical spectroscopy is routinely used to identify and 
characterize compounds, to analyze complex mixtures, 
and to follow chemical reactions. The usefulness of this 
technique results from the characteristic and distinctive 
interaction of each compound with electromagnetic ra- 
diation. Experimental results, however, are highly de- 
pendent on the specific conditions including the spec- 
troscopic technique, the geometry of the sample, the 
polarization of the incident radiation, and the angle at 
which the incident radiation impinges on the sample. 
Relevant information can be extracted from the exper- 
iment in the form of the optical constants. Since the 
optical constants are independent of the experimental 
method used, they are ideal for characterizing com- 
pounds and cross-referencing results obtained under dif- 
ferent experimental conditions. The optical constants 
are a direct consequence of the interaction of radiation 
and matter and thus provide insight into the molecular 
structure of a material. 

The relationship between the optical constants and 
the spectroscopic observables, although exact, is very 
complex. Thus, extracting the optical constants from 
measured data is not straightforward. Three approaches 
have been taken previously: the two-measurement meth- 
od, 1-9 the Kramers-Kronig analysis, s-13 and the harmonic 
oscillator parameterization? 4-'9 In the first approach, at 
least two independent measurements are made by chang- 
ing one experimental parameter, such as the incident 
angle, the polarization, etc. These spectra are then used 
to calculate n and K. The two-measurement approach 
typically reproduces one optical constant more accu- 
rately than the other z°,2' and is dependent on the exper- 
imental method. The second approach, the Kramers- 
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Kronig transform, is used either in conjunction with this 
first method or separately to analyze normal incidence 
reflectance data. Since Kramers-Kronig relates n and K 
to each other, it is more accurate than the first method. 
However, when used alone, the Kramers-Kronig ap- 
proach is restricted to a specific experimental technique. 
The third alternative parameterizes the functional form 
of  the dependence of the optical constants on wavenum- 
ber using a harmonic oscillator model. This method si- 
multaneously determines n and K from the same small 
set of parameters, and the optical constants automati- 
cally satisfy Kramers-Kronig. The small parameter set 
provides a concise format for storing the data and also 
provides insight into the molecular structure. This pa- 
rameterization approach compares favorably to the other 
techniques. 14-'s However, previous work has limited it to 
specific applications. 

This paper describes a numerical method for extract- 
ing the optical constants from transmission, internal re- 
flection, and external reflection spectra. It first describes 
enhancements made to the harmonic oscillator param- 
eterization and details the fundamental theory relating 
the optical constants to the spectroscopic observables, 
transmittance and reflectance. It then demonstrates ex- 
traction of the optical constants from the experimental 
spectra of polyethylene and glass. Finally, these optical 
constants are used to simulate spectra under a variety 
of conditions to illustrate potential applications. 

THE THEORY OF OPTICAL SPECTROSCOPY 

The relationship between the optical constants and 
the reflectance and transmittance of the material is de- 
scribed herein. This is accomplished in several stages. 
First, the molecular vibrations of the sample are modeled 
and the effect of an applied external electric field is de- 
scribed. This step provides the functional form of the 
dependence of the optical constants on wavenumber. 
Next, the propagation of radiation through the sample 
is developed by examining its propagation through an 
absorbing medium, an interface, a plane-parallel sample, 
and a multilayer. This step relates the optical constants 
to the spectroscopic observables and hence the molecular 
vibrations to the reflectance and transmittance of the 
sample. 

M o d e l i n g  t h e  M o l e c u l a r  V i b r a t i o n s .  Each molecule has 
an internal energy, U, which can be expressed in terms 
of the coordinates of its atoms. Linear and nonlinear 
molecules consisting of N atoms require 3N - 5 and 3N 
- 6 degrees of freedom, respectively, to describe their 
translational, rotational, and vibrational motions. Thus 
a set of generalized coordinates, Gi, can be found that  
completely describes the internal motions of the mole- 
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cule. The internal energy of a molecule can then be writ- 
ten as: 

U = U(G1, . . . ,  Gb) (1) 

where b is the total number of degrees of freedom per 
molecule. 

For small oscillations of the atoms around the equi- 
librium position, U can be expressed as a Taylor series 
expansion in generalized coordinates: 

_1"~ 02U G'G' 
U = U o +  2 ~  - 7 - ;  i j -F. . .  (2) 

j aG~OGj 

for all j and i from I to b. The G~ are defined as: 

G~ = G i - -  Gio (3) 

and G~o are the generalized internal coordinates of the 
atoms in their equilibrium state. The first term of Eq. 
2, Uo, is the internal potential energy of the molecule in 
the equilibrium state. Since the molecule is near equi- 
librium, the first-derivative term of the Taylor series is 

02U 
f / '  zero. The second-derivative term, cgG~OGj can be inter- 

preted as a matrix element of some matrix II. The matrix 
02 U 02 U 

II is symmetric since , , - This symmetric 
OG~OG i OG~OG~" 

matrix can be diagonalized with the use of a unitary 
transformation V. This procedure introduces a new set 
of b generalized coordinates, X~: 

X~ = ~ V~G~ (4) 

such that  

v i i i  v = ~ (5) 

where ~ is the diagonal matrix. Equation 2 can be re- 
written as: 

_1 + (6) 
U = U ° + 2  ~ . . . .  

While Eq. 2 describes a complex system of strongly cou- 
pled harmonic oscillators, Eq. 6 describes a system of 
weakly coupled (nearly noninteracting) harmonic oscil- 
lators. The second term of Eq. 6 represents the contri- 
bution to the potential energy from the fundamental 
collective vibrational modes, while the cubic and higher 
terms are responsible for combinations, differences, and 
overtones. For small oscillations, the cubic and higher- 
order terms of Eq. 6 are negligible, and the system can 
be described as a collection of independent harmonic 
oscillators. 

This decomposition of coupled harmonic oscillators 
into a collection of independent oscillators is known as 
a normal-mode expansion, and the independent oscil- 
lators are called normal modes. Each normal mode rep- 
resents a different collective vibrational state of the mol- 
ecule and is a linear combination of the original coupled 
harmonic vibrations. 22 

The Effect of an External Electric Field on the Molec- 
ular Vibrations. When one of these independent oscil- 
lators is exposed to an electromagnetic field, it becomes 
polarized. The electric field distorts the charge distri- 

bution within the molecule, inducing a dipole moment. 
The forces which bond the atoms within the molecule 
resist this disturbance and produce a restoring force. 
Energy losses from the excited normal mode also occur 
due to radiation damping and energy transfer to the 
other modes through the higher-order terms of the po- 
tential energy. These losses damp the harmonic oscil- 
lations of the normal mode described by Eq. 6. 

Thus, a normal mode can be described by the equation 
of motion for a damped harmonic oscillator in an electric 
field, E: 

_/d2x 3'-~-dx ) 
E q  = + + 00o X (7) 

where x is the displacement parallel to the field. The 
m00o2X is the harmonic restoring force, m is the reduced 
mass of the normal mode oscillator, q is the charge on 
that  oscillator, and ,y is the damping coefficient. 

The displacement of the oscillator varies with the same 
frequency o~ as the applied electric field. Thus the equa- 
tion of motion (Eq. 7) can be solved for x, giving: 

q/m 
x = E .  ( 8 )  

o~ - 002 + Im~00 

Note that  the strength of the interaction between the 
electric field and the oscillator depends on the difference 
between the frequency of the electric field, o~, and the 
characteristic frequency of the oscillator, ¢0o. 

The dipole moment induced by the external electric 
field, p, is a product of the charge and the displacement, 
i.e., p = qx. Substituting this into Eq. 8 gives: 

q2/rn 
p = E. (9) 

00~ - 00 2 + Im'y~ 

Since the induced dipole is proportional to E, it can be 
expressed as p = a(00)E, where a(00) is defined as the 
polarizability. Rearranging Eq. 9 gives a polarizability 
off 

q2/m 
a(00) = (10) 

oo02 _ 002 + Imago" 

Since the j normal modes are independent, the molecular 
polarizability is given by the sum: 

a(00) = ao + .= 00j2 _ 002 + Im%00 (11) 

where the j th  normal-mode oscillator has an oscillator 
strength (fj), a frequency (~oi), a damping coefficient (%), 
and an effective mass (gj). The rnp is the proton mass, 
and e is the electronic charge. The electronic contribution 
to the polarizability, ao, has been separated from the 
vibrational terms since it can be considered constant in 
the mid-infrared; i.e., a0 is independent of 00. 

Thus far, only the interaction between the external 
electromagnetic field and a molecule has been consid- 
ered. However, the electric field that  acts on that  mol- 
ecule results from both the external field and the electric 
fields of the surrounding molecules. If these surrounding 
molecules are neglected (i.e., molecules in a rarefied gas), 
then the polarization of the medium is simply expressed 
by Eq. 11. As the density of molecules increases, the 
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molecules come closer together and their interaction has 
a greater contribution to the internal potential  energy. 
This behavior perturbs the normal modes; e.g., charac- 
teristic frequencies shift  and damping constants change. 

The molecular interaction in a material  and the non- 
linear behavior of the dielectric constant,  ~, with con- 
centrat ion are part ly described by the well-known Clau- 
sius-Mossotti  relationship: 23 

47rNa(~o) 
e(oo) = 1 + (12) 

4~rNa(o0) 
1 

3 

where N is the number  of molecules per uni t  volume. 
The Clausius-Mossotti  relationship does not  account for 
all intermolecular interactions but  should provide a bet- 
ter est imate than  would the neglect of these effects. TM 

The dielectric constant  is related to the complex re- 
fractive index, n~, by: 

n~(oo) = ~ = n(w) + ImK(~) (13) 

where n(w) is the real refractive index of the medium 
and K(w) is the imaginary part  of the complex refractive 
index, also known as the absorption index. 

In infrared spectroscopy, frequency is typically mea- 
sured in wavenumbers,  PP, which is related to oo by: 

oo = 2~'cP (14) 

where c is the speed of light. 
Combining Eqs. 11 through 14 gives the optical con- 

stants  as a function of P and  the polarizability parameters 
of the normal modes: 

½ 

- N e 2  ~ f j / t9  
7rP¢ao + - -  2.~ - -  ' 

7rC2mp j=i ~Y - -  /~2 _~_ ImPFj [ 

I 
. . . .  N e  2 ~ L/ I t s  [ 
,iTrx~ ao -1- - -  , ~  . . . . .  t 

7rc2m. J-~ ~ _ ~2 + Im~Fj ]  
/ _ 

(15) 

where Fj = %/27rc. The fi, gJ, PPi, and F~ are the polariz- 
ability parameters  of the normal modes of the molecule, 
and ao is the electronic contribution to the polarizability, 
which can be est imated from the refractive index in the 
visible spectral region. Note tha t  the mass of a normal 
mode is on the same order of magnitude as the mass of 
an atom and is several orders of magni tude larger than  
the mass of an electron. Thus  the electronic contribution 
to the polarizability is much larger than  the vibrational 
contribution, except near resonant  vibrational frequen- 
cies. 

Equat ion 15 shows tha t  a set of parameters {fi, ttj, PPj, 
F i, ao} describes the optical constants, n and K, of a ma- 
terial at  a given wavelength. The optical constants, in 
turn,  are related to the t ransmit tance and reflectance of 
a material  through the Maxwell and Fresnel equations, 
as discussed below. 

Propagation of Radiation through an Absorbing Me- 
dium. The propagation of electromagnetic radiation 
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through an absorbing medium is described by Maxwell's 
equations. Maxwell's equations combine into the wave 
equation: 23 

0x 2 c 2 ~-2 E(x, t) = 0 (16) 

where E(×, t) is the ampli tude of the electric field in 
position x at  t ime t, e(oo) is the dielectric constant  of the 
medium at frequency ~o, and c is the speed of light. Solv- 
ing Eq. 16 gives: 

E(x, t) = Eo e'mk'x- trent (17) 

where Eo is the ampli tude of the electric field at  position 
x = 0 and t ime t = 0. The wave vector k' points in the 
direction of propagation of the electromagnetic field, and 
its magni tude is found by substi tut ing Eq. 17 into Eq. 
16. This step gives the dispersion relation: 

I k ' l  2 - e(°°)°°2 (18) 
C 2 

Recall from Eq. 13 tha t  the square root of the dielectric 
constant  is the refractive index. Thus if the dielectric 
constant  is a complex quanti ty,  then  the refractive index 
is complex. With  the use of Eqs. 13, 14, and 18, the 
solution to Eq. 17 can be rewrit ten in terms of the optical 
constants: 

E(x, t) = Eoe 2~'~xeIm(2~m~x-~t). (19) 

The intensi ty of the electric field is proportional to the 
square of the absolute value of the electric field. Thus: 

I(x) = I(0) e -4~'~x. (20) 

Equat ion 20 is the well-known Lamber t  law, which de- 
scribes the absorption of radiation as it propagates 
through a medium. If  x is chosen in the direction of 
propagation, then  ~x = Px. Therefore, the intensi ty of 
radiation decreases along the propagation direction with- 
in the medium. The strength of the absorption is con- 
trolled by the imaginary part,  K, of the complex refractive 
index, no. If  both parts of the complex refractive index 
are known, the transmission of an electromagnetic field 
through a medium can be calculated. 

Propagation of Radiation through an Interface. An elec- 
t romagnetic  field at  an interface between two media par- 
tially reflects and partially t ransmits  (see Fig. 1). There- 
fore, there are three waves of the form of Eq. 19--incident, 
t ransmit ted,  and reflected: 

E i n ( x  , t )  : E i n ( 0 ) e  Irn(2~n~' . . . . .  t) (21a) 

E,(x, t) = E,(0)e Im¢2""19 . . . .  e) (21b) 

E,(x, t) = Et(0)e Im(2~n2~ . . . .  t) (21c) 

where n~ and n2 are the complex refractive indices which 
describe the incident and t ransmi t ted  medium, respec- 
tively. From Maxwell's equations, the boundary  condi- 
tions for these three fields can be deduced. For parallel 
(p) and perpendicular (s) polarizations of the incident 
radiation, these conditions are expressed as: 

ET.(O) = r~Ei,(O) (22a) 

E~(O) = t~E~n(O) (22b) 



Er 

E in 

Er 

E in 

Et 

Fro. 1. The reflection and transmission of radiation from a single 
interface. Arrows indicate the direction of propagation of the radiation. 

E f  (0) = rPE~n(O) (22c) 

El(0)  = t 'E , , (0)  (22d) 

where r% t s, rp, and t p are the Fresnel ampli tude coef- 
ficients: 

n~cos 0 - n~k /n~  - n~sin20 
rf2 = - (23a) 

n~cos 0 + n~k /n~  - n~sin20 

nlcos 0 - k/n~ - n~sin20 
r~2 = (23b) 

n~cos 0 + k/n~ - n~sin20 

2n,n2cos 0 
t£2 = (23c) 

n~cos 0 + n~V/n~ - n~sin20 

2nlcos 0 
t~2 = (23d) 

nlcos O + ~/n~ - n~sin20 

and 0 is the angle of incidence. 
To relate the Fresnel ampli tude coefficients to the 

t ransmit tance and reflectance of the interface, consider 
the radiation tha t  impinges on the interface. The power 
of this radiation must  be conserved, tha t  is: 

Pin = P ,  + P ,  (24) 

where Pin, Pr, and Pc are the power of the incident, re- 
flected, and t ransmit ted  radiation respectively. Equat ion 
24 can be rewritten in terms of the energy density, u: 

UinCinAin = U r C r A  r + u t c t A  t (25) 

where c is the speed of light for the specified radiation, 
and A is the cross-sectional area of tha t  radiation. Re- 
lating the speeds of the t ransmit ted  and reflected radi- 
ation gives: 

-~-u, .A,n  = --l--urA, + Z u t A  t. (26/ 
n I n~ n 2 

The areas are related through the incident angle 0 and 
the refracted angle ~b such that:  

n~ cos 
Uin = Ur + - -  - -  u~. (27) 

n 2 cos  0 

I d I 
FIG. 2. The reflection and transmission of radiation from a plane- 
parallel sample. Arrows indicate the direction of propagation of the 
radiation. 

1 
Since u = ~ E  2, Eq. 27 can be rewritten as: 

Ei2~ = E~ + nl k/1 - sin2CE~" (28) 
n 2 COS 0 

With  the use of the relationship between the angles 0 
and ¢, in addit ion to Eqs. 22, Eq. 28 can be expressed 
as:  

1 [r/2[2 + nl k/n~ - n~sin20 
= - -  ] t~2 j2 (29)  

n 2 n 2 c o s  0 

where i stands for the polarization of the incident ra- 
diation. Equat ion 29 reflects the law of conservation of 
energy; i.e., all radiation is either reflected or transmit-  
ted. None of the radiation is absorbed at the interface. 

The reflectance, R i, and transmittance,  T ~, of the in- 
terface are thus related to the Fresnel ampli tude coef- 
ficients: 

R '  = ]ri2[ 2 (30a) 

T / = n_A X/n22 -- n~sin20 
n2 n2cos 0 J t~2 [2 (30b) 

Equations 30 completely express the relationship be- 
tween the reflecting properties of an interface and the 
optical constants of the materials on both sides of tha t  
interface. 

R e f l e c t a n c e  and  T r a n s m i t t a n c e  o f  a P l a n e - P a r a l l e l  
S a m p l e .  Assume tha t  a plane-parallel sample of thick- 
ness d is sandwiched between two semi-infinite media, 
as il lustrated in Fig. 2. Electromagnetic radiation of the 
i th  polarization (s or p) is incident on the sample through 
the first medium at an incident angle, O. 

The form of the solutions (Eqs. 21) for an electro- 
magnetic field inside various media and the boundary 
conditions (Eqs. 22) completely describe the process il- 
lustrated in Fig. 2. Within the sample, there are two 
components  of the electric field. One travels along the 
incident direction, E+(x, t), and one travels in the op- 
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FIG. 3. The reflection and transmission of radiation from a multi- 
layer sample (k = 6). 

posite direction, E_ (x, t). The  boundary  conditions re- 
quire that ,  at  the first interface: 

i i i i E~(0) = tl2Ei.(0) + r2~E_(O) (31a) 

i i i i E~r(O) = r~2E~(O) + t2 tE_(O)  (31b) 

and at  the second interface: 

E L ( d )  = r~aE~_ (d)  (32a) 

E l ( d )  = t~E~_(d )  (32b) 

where r~a and t~a are the Fresnel  ampl i tude  coefficients 
a t  the second interface. These  coefficients can be ex- 
pressed in terms of the angle of incidence on the first 
interface (0) as follows: 

n ~ k / n ~  - n~sin20 - n ~ / n ~  - n~sin~O 

r~a = naN/n22 ~ _ n~ sin20 + n 2 k / n 2  _ n~ 2sin20 (33a) 

X/n22 - n~2sin~O - ~,/n2~ - n~sin20 
(33b) 

rgz = X/n2 ~ _ n~s in20 + k/n]  - n~sin20 

2 n ~ n ~ v / n ~  - n~sin20 

t ~  = n ] ~ / n ~  _ n~ sin20 + n ~ k / n ]  - n~sin~O (33c) 

2V'n~ - n~sin20 

tip = V'n~ - n~sin20 + k/n~ - n~sin20" (33d) 

T h e  solutions to Maxwell 's equat ions relate E ~ ( d )  and 
E~(0):  

E~_ (d) = E~ (0) e 21m~d n~-n~sin20 (34a) 

E L  (d)  = E~_ (O)e -2 Im '~d~ ' :~ i '~°  (34b) 

Using Eqs. 32 through 34, we find that:  

E~(0) ri2 + ri23 e4Im~r~dx/n~-n~sin~e 
pi = _ _  : (35a) 

E i n ( O  ) 1 - ~ - ~ 1 2 . 2 3  ~ t ' i  t - i  ° 4 I m v ' ~ d ~ / ~ s i n 2 0 -  - 

r~ = E~(d)  = __t~a (1 - r~2p~)e -~2-=~-~ ~o (35b) 
Ein(O) t ~  
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where ~ is measured in wavenumbers  or reciprocal wave- 
lengths. 

The  spectroscopic observables are: 

T i [ril2nl V ' n ]  - n~sin20 
= (36a) 

n 3 n3cos O 

R ~ = [pi[ 2 (36b) 

where the t ransmit tance ,  T ~, and reflectance, R ~, are de- 
t e rmined  by direct ly subst i tut ing Eqs. 35 into Eqs. 36. 

The  specific choices of the incident  angle, the polar- 
ization, the optical  constants  of the three  materials,  and 
the spectroscopic technique  ( internal  reflectance, exter-  
nal reflectance, or t ransmit tance)  pe rmi t  descript ions of 
a broad range of exper imenta l  conditions. 

Reflectance and Transmittance of Multilayers. This  
model  can be fur ther  ex tended  to describe the reflectance 
and t ransmi t tance  of a mult i layer  (see Fig. 3). For  a 
sample with (k - 1) plane-paral lel  layers each with thick- 
ness d j, the  reflectance and t ransmi t tance  can be wri t ten 
as: 

R i Ipil e M21 2 
= = ( ~ )  (37a) 

T i = i r~12 = (37b) 

where M21 and M~ are e lements  of the matr ix  M: 

r 1 2  

( il( 
\ j=2 t i ; i+ l \ r i ; i+ l  e x '  eX~ ] ]  

\rh;k+leX~ eX  ~ ] (as) 

X h  = 4Im~r~dh~v/n~ - n~sin20. (39) 

This  formulat ion of Eqs. 36 is ext remely  useful for mod- 
cling materials  coated with one or more layers. 

For  an infinite number  (k -~ oo) of infinitesimally th in  
layers (d~ ~ 0). Eqs. 37 reduce to: 

+ /3/2 (r/~,b + rir~) 2 
+ [l~i(r~b - rir ~) + ~i(1 + ri~br~r~)] 
• t a n h ( k / ~  + /3~) 

R i = (40a) 
i i + fl~(1 + rsubrire) 

+ [B~(1 -- ri~,brir~) + &(r~,b + ri~)] 

T i ~_ 

_fod On~am~(X)ox nsampte( x ) 
2 2(n~amp~e(X) -- n~resin20) 

i i cosh(X/~ + fl~)(1 + rsubrire) 
+ s inh (k /~  + ~ )  

i i i i • [/~i(1 - rs,brire) + ~i(rsub + rire)] 

(40b) 

where rsubi is the Fresnel  ampl i tude  coefficient for the 
interface between the mult i layer  and substrate,  rlre is the 
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External  reflection spectra  of polyethylene (a) measured and 
(b) calculated for an incident  angle of 45 ° with s-polarization. 

Fresnel amplitude coefficient for the interface between 
material 1 and the multilayer, and n~ampt~(X) is the re- 
fractive index of the multilayer at a depth, x, into the 
material. The ~i and/3~ from Eqs. 40 are defined as: 

fO d Onsampte(X ) 
~ = dx nsam#e(X ) OX 

"(1 - ns2arnple(X) ~ (41a) 
2(n~amp~e(X) -- n,~eSin20)] 

fo ~p = dx an~ompAX ) n~om.AX ) 
Ox 2(n~.~pt~(x) - n/2~sin20) (41b) 

fo ~ =/~p = Im dx k/nSmvz~(x) - n/2~sin20. (41c) 

Equations 40 essentially describe the spectroscopic ob- 
servables across a material where the optical constants 
vary with the depth into the material. Thus from Eq. 16, 
which is only valid for homogeneous media, we can de- 
scribe the reflectance and transmittance of an inhomo- 
geneous material. 

EXPERIMENTAL 

To illustrate some applications of this model, we ex- 
amined two samples, polyethylene and glass. A piece of 
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FIG. 5. External reflection spectra of polyethylene at an incident angle 
of 70 ° with s-polarized radiation (a) measured and (b) calculated. 
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The  optical constants  of polyethylene. 

high-density polyethylene was polished for the external 
reflectance measurements, and a thin slice of the same 
material was used for the internal reflectance studies. 
The glass sample was a microscope slide which was used 
as is. 

External and internal reflection spectra were recorded 
with a Mattson Polaris spectrometer. For the polyeth- 
ylene studies, the infrared spectrometer was equipped 
with the Seagull@~ 24 and two wire-grid polarizers on 
KRS-5 substrates. Two polarizers were used to ensure a 
well-defined polarization of the incident beam. The in- 
ternal reflectance measurements utilized a ZnSe hemi- 
spherical internal reflection element (IRE). The reflec- 
tance spectrum of glass was measured with the use of 
Harrick's External Specular Reflection Accessory, which 
provides a 45 ° angle of incidence on the sample. 

For the experimental measurements, a single-beam 
reference spectrum, Io, was recorded under the same con- 
ditions as the single-beam sample spectrum, I,, and the 
reflectance spectrum ( lO0*IJI  o) was calculated. For ex- 
ternal reflectance, a front-surface aluminum mirror was 
used as the reference. For internal reflectance, the in- 
ternal reflection element was the reference material. 

The numerical simulations were performed on an "AT" 
compatible computer using Harrick's SOS@ software 
package. This package is an implementation of the the- 
oretical approach described herein. Measured spectra 
were transferred to the simulation with the use of the 
JCAMP-DX format35 Simulated spectra were stored in 
the JCAMP-DX format and then transferred to Matt- 
son's First@ software for final processing and plotting. 

:~ Harrick 's  variable-angle reflectance accessory. 

TABLE I. The polarizability parameters used for polyethylene.- 

fJ ( amu- ' )  
(cm 1) Fj ( cm- ' )  E 

1458.0 15.0 0.0050 
1474.0 5.0 0.0025 
2850.0 10.0 0.0450 
2885.0 30.Q 0.0070 
2900.0 30.0 0.0070 
2919.8 11.5 0.0980 
2930.5 19.0 0.0480 

a Electronic contr ibut ion to the  refractive index: 1.49. 
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Internal  reflection spectra  of polyethylene (a) measured and 

RESULTS AND DISCUSSION 

With the use of the model described here, the optical 
constants for a given sample can be extracted from ex- 
perimental data. The optical constants can then be used 
to predict spectral features that  result from various ex- 
perimental conditions, i.e., spectroscopic technique, sam- 
ple thickness, incident angle, and polarization. In par- 
ticular, we have applied this model to polyethylene and 
glass. 

Polyethylene. The external reflection spectrum of 
polyethylene was recorded at 45 ° with s-polarized radi- 
ation (see Fig. 4). The calculated spectrum was then fit 
to the experimental spectrum as follows: For external 
reflectance, Material 1 is the air (refractive index nl = 
1) that  surrounds the polyethylene, Material 2. For an 
optically thick sample (i.e., kd >> 1), the reflectance from 
the sample can be described as the reflectance from a 
single interface (Eq. 30a). An initial guess for the elec- 
tronic polarizability parameter, C¢o, was formulated from 
the real refractive index of polyethylene at the sodium 
D line, 26 and the reflectance was calculated. The refrac- 
tive index was then adjusted to account for the average 
reflectance observed outside the absorption regions. The 
parameters ~i and I'i were estimated from the experi- 
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Fro. 8. Transmiss ion spect rum of a 5-#m-thick film of polyethylene 
calculated at  (a) normal  incidence (O = 0 °) and (b) Brewster 's  angle 
(O = 55 °) with p-polar izat ion radiation. 
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Fro. 9. External  reflection spec t rum of a 0.1-~m-thlck coating of poly- 
ethylene on a luminum at an incident  angle or 20 ° with p-polar ized 
radiation. 

position (Pi), and width (Fj) were then refined to fit the 
measured peaks. The best-fit parameters are presented 
in Table I, and the resulting spectrum is shown in Fig. 4. 

The calculated spectrum is a good fit to the experi- 
mental data around 3000 cm -1 but deviates from it at 
lower wavenumbers. This observation results from dif- 
ferences between the theoretical model and the experi- 
mental conditions. The simulation used calculates the 
reflectivity at one incident angle, while the observed re- 
flectivity depends on a distribution of angles based on 
the beam spread of the spectrometer. The model also 
assumes a perfectly smooth material, but the polyeth- 
ylene sample was not highly polished. In addition, the 
reference material was not taken into account. The ref- 
erence material is generally not perfectly reflective, and 
its reflectivity is a function of wavenumber. 

To confirm that  the parameters from Table I provide 
a good description of the normal modes of polyethylene, 
we examined a second set of experimental conditions. 
Figure 5 shows the measured and calculated external 
reflectance at an incident angle of 70 ° with s-polarization. 
The differences between these spectra are similar to those 
of Fig. 4. Hence the selected parameters reproduce the 
external reflectance of polyethylene and provide a rea- 
sonable representation of the polarizability. The optical 
constants were then calculated from these parameters 
and are shown in Fig. 6. 

Figure 7 compares the calculated and experimental 
internal reflectance for a 55 ° incident angle and s-polar- 
ized radiation. Note that  internal reflectance is governed 
by the same formulae as external reflectance. For internal 
reflection, Material 1 becomes the IRE on which the 
sample, Material 2, is pressed. As in the case of the ex- 
ternal reflectance measurements, the polyethylene was 
optically thick, and hence the spectrum can be described 
by Eq. 30a. The refractive index of the ZnSe IRE was 
assumed to be 2.42. 25 The fit, shown in Fig. 7, is sur- 
prisingly good considering the additional experimental 
variables introduced by internal reflectance. Since poly- 
ethylene is a solid, pressure was applied to achieve good 
contact between the sample and the IRE. This changed 
the density of the sample and possibly its structure. In 
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Fro. 10. Ex te rna l  reflection spec t ra  of  glass (a) measu red  and  (b) 
calculated for an  inc ident  angle of 45 ° with unpolar ized inc ident  ra- 
diation. 

addition, the polyethylene may have been oriented, and 
sample orientation was not maintained during these 
measurements. These properties affect the polarizability 
and hence the spectroscopic observables. Thus the sam- 
ple examined by external reflectance may have differed 
from that studied by internal reflectance. An additional 
error was introduced by assuming a constant IRE re- 
fractive index. The refractive index is actually a weak 
function of wavenumber. However, the resulting error 
from this approximation is expected to be small relative 
to those mentioned previously. 

Figures 8 and 9 illustrate other potential applications 
of this model, specifically with regard to thin films. For 
an optically thin material, Material 3, the substance be- 
hind the sample (either air or a substrate) must also be 
considered. Figure 8 shows the transmittance of a free- 
standing 5 #m-thick polyethylene film at normal inci- 
dence (0 = 0 °) and at Brewster's angle (0 = 55°), cal- 
culated from Eq. 36a. Since the film is free-standing, 
Materials 1 and 3 are air (n = 1, K = 0). Note that  the 
interference fringes that  appear in the normal incidence 
spectrum do not appear in the spectrum obtained at 
Brewster's angle. 27,2s 

Figure 9 shows the external reflection spectrum of a 
0.1-#m-thick film of polyethylene on aluminum, calcu- 
lated from Eq. 36b for an incident angle of 20 ° and for 
p-polarization. The refractive index of aluminum (Ma- 
terial 3) as a function of wavenumber was calculated from 
its plasma frequency. 29 Note that  no interference fringes 
are seen here, as expected. 2s 

Glass. In addition to polyethylene, the spectral fea- 
tures of glass were examined. Glass exhibits two bands 

T A B L E  II. The polarizability parameters used for glass." 

[J (amu_,)  ( c m - ' )  I~ ( c m - ' )  U"'S 

482 65 0.50 
785 50 0.03 
990 90 0.09 

1090 100 1.11 
1140 90 O.63 
1180 73 0.30 

" Electronic  cont r ibu t ion  to the  refractive index: 1.65. 
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FIG. 11. Ex te rna l  reflectance of a 500 A-thick  glass coating on alu- 
m i n u m  calculated for a 75 ° inc ident  angle and  p-polar ized  radiat ion.  

in the 1300-800 cm -1 region, and the more intense band 
varies depending on the spectroscopic technique2 ° Thus 
glass was chosen as a test to see whether this behavior 
could be reproduced. 

The external reflectance of an optically thick glass slide 
was recorded at an incident angle of 45 ° with unpolarized 
radiation (Fig. 10). The simulated spectrum was then fit 
to the experimental data, as described previously. The 
resulting spectrum is shown in Fig. 10, and the param- 
eters for the fit are listed in Table II. Note that  this is 
not the best fit possible, but it is good enough to illustrate 
the changes in the glass spectrum with technique. 

Using the polarizability parameters from Table II, we 
calculated the external reflection spectrum of a 500-A- 
thick glass film on aluminum for grazing angle and p-po- 
larized incident radiation (Fig. 11). The broad band that  
appeared in the external reflection spectrum of an op- 
tically thick sample is now dominated by the band at 
1200 cm-L This band becomes weak relative to the band 
at 1100 cm -1 in transmittance (see Fig. 12). However, 
both bands can be resolved in the internal reflectance of 
a thin glass coating on an organic substrate, as demon- 
strated in Fig. 13. This striking theoretical variation in 
spectral features due to differences in conditions has 
been observed experimentally2 °,3~ 
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Fro. 12. S imula ted  no rma l  incidence t r a n s m i t t a n c e  of a 0 .1-um-thick  
glass window. 
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Internal reflectance spectrum of a 500-/Z-thick glass coating 
on polyethylene. Calculated at an incident angle of 45 ° and unpolarized 
radiation with a ZnSe IRE. 

CONCLUSION 

A generalized method has been compiled and imple- 
mented for fitting the optical constants to experimental 
spectra. This method utilizes a classical harmonic oscil- 
lator model for the vibrational modes and differs from 
the quantum mechanical description in terminology only; 
i.e., the resulting formulae are the same. It links the 
molecular polarizability, the optical constants, and the 
spectroscopic observables for which exact descriptions 
can be developed (i.e., transmission, external reflection, 
and internal reflection). As demonstrated by the poly- 
ethylene and gIass examples, this method describes a 
wide variety of experimental conditions including spec- 
troscopic technique, sample thickness, incident angle, 
and polarization. 

With the use of this general formalism, various ap- 
parently different phenomena can be related and further 
investigated. The range and degree of validity of many 
phenomenological relationships (e.g., Beer's law) can be 
determined. Practical problems can undergo preliminary 
screening to determine the optimum conditions for ex- 
perimental analysis. 
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