OPERATING MANUAL

MODEL 855
PROGRAMMABLE CONTROLLER SYSTEM

Newport Corporation
18235 Mt. Baldy Circle
P.O. Box 8020
Fountain Valley, CA 92728-8020

Ver. #8502
TABLE OF CONTENTS

1.0 INTRODUCTION AND DESCRIPTION
 1.1 The 855C Controller
 1.1.1 Front Panel
 1.1.2 Manual Slew Operation
 1.1.3 Rear Panel
 1.2 855K Keypad/Display
 1.3 System Hardware Description

2.0 855 OPERATION
 2.1 Operating Modes
 2.2 Assigning Control to the 855K or External Device
 2.3 Significant Figures and Numeric Field Formatting
 2.4 Selecting Linear or Rotary Drives
 2.5 First-Time Operation
 2.6 855C Instructions and Command Set
 2.6.1 Data Entry Instructions
 2.6.2 Backlash Compensation
 2.6.3 Queries
 2.6.4 Motion Instructions
 2.6.5 Echo Suppression Command
 2.7 JOG-Mode Instructions
 2.8 Programming the 855C
 2.8.1 Entering PROGRAM EDIT-mode
 2.8.2 PROGRAM EDIT-mode
 2.8.3 Special Program Statements
 2.8.4 PROGRAM RUN-mode

3.0 INTERFACING
 3.1 Input Data Format
 3.2 Output Data Format
 3.3 Buffers
 3.4 RS-232C Serial Port
 3.5 IEEE-488 (HPIB) Port

4.0 SAMPLE PROGRAMS
 4.1 Sample 855C Program
 4.2 Sample HP-85 Programs

5.0 APPENDICES
 5.1 Error Messages
 5.2 Table of Commands
 5.3 List of Figures
 5.4 System Schematics and Wiring Diagrams
1.0 INTRODUCTION AND DESCRIPTION

About the 855 Programmable Controller System

The Model 855 Programmable Controller is a microprocessor-based system that allows simultaneous direct or programmable control of up to four Newport linear actuators or rotary stages. Its simple but powerful vocabulary of mnemonic commands allows straightforward programming and control via the handheld 855K Keypad/Display or, with its standard RS-232C and IEEE-488 interfaces, a remote computer, terminal or modem.

The 855C is compatible with Newport's 850 Series Linear Actuators and Model 496 Power Rotation Stage. Each of these devices use DC motor drives with integral optical encoders for smooth operation and high resolution. The 855C fully supports their resolution and range.

The 855C has four basic operating modes. All are accessible via the 855K Keypad/Display or the RS-232C or IEEE-488 ports. EXECUTE-mode, which the 855C is in at power-up, allows manual precision control of four actuators. From EXECUTE-mode, you may move back and forth between PROGRAM EDIT-mode, PROGRAM RUN-mode, and JOG-mode. PROGRAM EDIT-mode is for entering, reviewing and editing up to 300 855C instructions into its memory for later, automatic execution in PROGRAM RUN-mode. JOG-mode provides a convenient means for repetitively moving actuators back and forth by a specified increment.

About this Manual

This manual has been carefully prepared to give all the information needed to use the 855 System productively. To get you up to speed quickly, its basic principles of operation are presented in Section 2.5, "First-Time Operation." Reading through this section will give you the background you'll need to use the complete instructions that follow. Each 855C function, mode and command is described in detailed discussions, and summary tables and indexes are provided for quick reference.
1.1 The 855C Controller

The 855C Programmable Controller is the nucleus of a system that automatically controls up to four Newport precision positioners and stages. Its large, easy-to-learn instruction set and standard RS-232C and IEEE-488 interface ports allow it to work closely with external computers and other data devices. Its programmability provides stand-alone automatic control of actuator motion, yet no knowledge of programming techniques is required. It also supports the optional 855K handheld Keypad/Display for convenient data entry, control and program editing.

Specifications

Actuator Control: Provides ± 15 VDC, 1.5 Amp power and ± 10 V velocity control signals for up to 4 Newport linear or rotary positioning devices. Receives and decodes dual output, 90° phase, +12.5, -0.5 V encoder pulses and limit signals.

CPU: 8 bit 6809 high-performance microprocessor

RAM: 4 Kbytes

PROM: 24 Kbytes

EPROM: 2 Kbytes

I/O: RS-232C Serial Port
IEEE-488 Parallel Port

Power: 110-220 VAC, 50/60Hz (selectable)
850 mA with all actuators fully loaded

Dimensions: 5.25" high X 17" wide X 12" deep
1.1.1 Front Panel

The 855C front panel is shown in Fig. 2. The ON button <<1>> applies power. The coiled cable for the 855K Keypad/Display plugs into the front panel connector <<2>>.

The STOP button <<3>> is intended for use as a panic stop control. When depressed, the STOP button:

--halts all actuator motion. Motion will not resume upon release.

--terminates processing of commands and programs. If a program was running, the 855C is placed in EXECUTE mode and "T at xxx" is sent to the active controlling device to indicate program termination at line number xxx.

1.1.2 Manual Slew Operation

The eight arrow-shaped membrane switches <<4>> move the drives under manual control when held down. The left-hand arrow switches retract linear actuators and turn rotational drives counter-clockwise; the right-hand arrow switches extend linear drives and turn rotational drives clockwise.

Manual slew control overrides any command or programmed motion and ignores preset drive parameters such as velocity and soft actuator limits. Manual slew will proceed even if the drive velocity has been set to zero (drive "off") or if the STOP button is depressed. The 855C will, however, keep track of the drives' positions when they are slewed.

When an arrow key is depressed, manual slew motion will commence at a velocity of 0.05 mm/sec (or 0.5°/sec). If the arrow key is held down, the drive will gradually speed up to its maximum velocity of 0.4 mm/sec (4.0°/sec) after about five seconds. The drive will immediately stop when the arrow key is released. (When an arrow key is depressed with the STOP switch engaged, manual slew proceeds at maximum speed, and all drives will immediately be returned to their original positions when the STOP switch is released.)

The manual slew arrow keys can produce a slow jog motion if rapidly depressed and released.
1.1.3 Rear Panel

The 855C rear panel is shown in Fig. 3. The 855C can be used with 100, 120, 220, or 240 Volt, 50 or 60 Hz service and is supplied ready for operation at 120 volts. The combination line fuse, voltage selector and power connector is located on the upper right corner of the rear panel.

Drive Connectors

One to four drives may be connected to the 9-pin miniature D-connectors <<2>>. These connectors mate to Newport's Series 8501-xx Cables (where xx is the cable length). The drives are numbered on the rear panel next to the connectors.

Interface Ports

The 855C's RS-232C port is provided at a female DB-25 connector <<3>> on the rear panel. This port is configured as DTE. See Section 3.4, "RS-232C Serial Port," for detailed discussion of the RS-232C port and protocol.

A standard IEEE-488 connector is shown at <<4>>. This port is discussed in Section 3.5, "IEEE-488 (HPIB) Port."

A DIP switch <<5>>, labelled RS-232/IEEE-488, sets the IEEE-488 device address and the RS-232C baud rate. Next to it <<6>> is a reference table showing the switch setting options. Setting this switch is described in Section 3.0.

Changing the Supply Voltage

The voltage selector card is set at the factory for 120 Volt operation. If the 855C is to be used with other line voltages, the selector card position must be changed.

Disconnect the line cord and slide the clear plastic fuse cover to the left, exposing the fuse and the voltage selector card. Pull the FUSE/PULL lever out and to the left to extract the fuse and expose the voltage selector card. This small printed circuit card selects different line voltages when inserted in different ways. Insert it so the desired voltage, printed on the card, is visible. Swing the fuse extractor lever back into place.

Use a 2 Amp fuse for 100 or 120 Volt operation and a 1 Amp fuse for 220 or 240 Volt operation. Install the proper fuse, slide the clear plastic cover back into place, and reconnect the line cord.
1.2 855K Keypad/Display

The 855K is shown in Fig. 4. It can be used to completely control and program the 855C. It is handy for manual control of actuator position and for reviewing and editing 855C programs— including programs downloaded from a remote computer. Its backlight alphanumeric liquid-crystal display shows position information for the four drives, programming instructions for the 855C, and messages from the 855C. The 855K's keypad has 35 durable, tactile-response membrane keys for command and data entry. The 855K connects to the 855C via a coiled cable; its jack is on the front panel of the 855C.

Backlight

The backlight for the display is turned on and off by pressing the 855K's CNTL key while holding down the Q key. (Use the CNTL key with caution. See Section 2.8.4, "PROGRAM RUN-mode," for a discussion of the CNTL key's other functions.)

Assigning Control to the 855K

Upon power-up, control must be assigned to the 855K, the RS-232C port, or the IEEE-488 port. Control assignment and reassignment are discussed in detail in Section 2.2, "Assigning Control to the 855K or External Device."

Briefly, to assign control to the 855K Keypad/Display, press QUIT Q on the 855K immediately after power is applied and the display prompts for control assignment. The system will then be ready to receive control instructions from the 855K.
2.0 855 OPERATION

The 855C is controlled by 26 commands sent to it by the controlling device, which may be the 855K Keypad/Display or a remote computer, terminal or modem connected to the RS-232C or IEEE-488 interfaces. The four operating modes of the 855C allow immediate execution of commands (EXECUTE-mode), storage of commands for later review and editing (PROGRAM EDIT-mode), automatic execution of stored commands (PROGRAM RUN-mode), and repetitive back-and-forth actuator motion over a selected increment (JOG-mode).

The 26 commands follow a consistent format: a single-letter mnemonic instruction code, followed (usually) by a single number designating the drive, a second number (with sign and decimal point if needed) giving the command data, and a carriage return, <CR>. On the 855K, the instruction code letter is input by pressing a single button on the keypad, and the ENTR key acts as a carriage return. When the 855C receives an erroneous command, it responds with a question mark (?).

Commands are sent through the RS-232C and IEEE-488 interfaces in the form of standard ASCII strings, as are responses from the 855C. Special considerations for use of these interfaces are given in Sections 3.0–3.5. Assigning control to an interface is discussed in Section 2.2, "Assigning Control to the 855K or External Device."
EXECUTE-mode

This is the 855C's main operating mode. It is the default mode upon power-up. All the other modes are accessible via EXECUTE-mode.

If the 855K Keypad/Display is connected, the positions of all four actuators are displayed and continuously updated approximately twice per second. This is true even if the RS-232C port or the IEEE-488 port has been assigned control. Position information is not sent to the RS-232C or IEEE-488 ports on a continuous basis; it must be requested by a query command at the time it is desired. (Or, in PROGRAM RUN-mode, a programmed query command will send the information to the active controlling device.)

In EXECUTE-mode, motion commands are executed immediately upon entry. If a motion instruction includes operations for a drive which is currently executing a command, the command will be held until the drive's motion is complete. Then the new command will be executed. During the time the command is held, no new commands will be processed (though they may be queued in the RS-232C and IEEE-488 ports' 1,000-character input buffer). Once entered, commands-in-waiting may be cancelled by the TERMINATE command (which will also bring all drive motion to a halt).

Because of the command-stacking capability of the RS-232C and IEEE-488 ports' input buffer, a sequence of commands can be downloaded for sequential execution by the 855C.

JOG-mode

JOG-mode allows manually-controlled incremental actuator motion at a preset velocity using the FORWARD and REVERSE commands. The jog step size is programmable and must be set to some non-zero value prior to entering JOG-mode.

JOG-mode is activated by entering the FORWARD or REVERSE command (on the 855K, by pressing the FWD or REV key) and the number of the drive to be jogged (1 through 4, or 0 to jog all four drives); then the FORWARD and REVERSE commands may be entered to initiate jog motion of the designated drives. A carriage return <CR> (855K ENTER key) terminates JOG-mode.
PROGRAM RUN-mode

When the 855C is in PROGRAM RUN-mode, instructions stored in its memory are executed automatically and sequentially.

PROGRAM RUN-mode is entered from EXECUTE-mode by issuing a GO command from the controlling device. Program execution stops and the 855C returns to EXECUTE-mode when a TERMINATE command is encountered, either as a program step or if entered via the controlling device. Program execution will also cease and put the 855C in EXECUTE-mode if the 855K's CNTL key is depressed; this key also transfers control of the 855C to the 855K. Depressing the 855C's front-panel STOP button will also halt a running program and return the 855C to EXECUTE-mode when the button is released.

While executing a program in PROGRAM RUN-mode, the 855C will respond to only three commands: the TERMINATE and CNTL instructions just mentioned, and the ? query, which is discussed in Section 2.8.3 and which is entered via the RS-232C or IEEE-488 ports only. All other inputs will be disregarded and lost.
This means that if no device is connected to a port to which control is assigned, the 855C will not respond to commands from any other port. There is one exception: the CNTL key on the 855K will grab the attention of the 855C at any time—even when it is running a program—and will assign control to the 855K, terminate actuator movement, and put the 855C in EXECUTE-mode. There is no corresponding command string for other controlling devices, and the CNTL command is not programmable.

When control is assigned to either the IEEE-488 or the RS-232C interface port, the 855C's 1,000-character input buffer will prevent data loss if several commands are issued in rapid succession. Commands—including QUIT commands—will be queued for sequential execution at the 855C's pace. Note, however, that control reassignment occurs when a QUIT command is executed, not when it is issued. Control reassignment may be significantly delayed if the 855C is working its way through a block of queued commands.

If the QUIT command is queued in the 855C's input buffer, commands will still be accepted (into the queue) from the device that issued the QUIT command (and will not be accepted from the "new" controlling device) until the QUIT command is actually executed.

It is therefore good practice to ensure that no data is sent from any controlling device after it has reassigned control to another device, and the "new" controlling device should send no commands until the 855C has responded to the QUIT command by sending "quit to <<new device>>" to the requestor.
2.4 Selecting Linear or Rotary Drives

The 855C assumes it is controlling linear actuators unless
told otherwise. For linear actuators, data is displayed and
interpreted in millimeters, with four decimal places
(resolution to 0.1 micron).

If drive d is a rotary drive, you will want to instruct the
855C to interpret data in decimal degrees with three decimal
places (resolution to 0.001°). This is done by pressing _
(decimal point), d (the number of the drive—the number of
its connector on the 855C back panel), and ENTR on the 855K.
The 855C will respond by formatting that drive’s position
data to three decimal places on the 855K Display.

The same character sequence—with ENTR replaced by a
carriage return character—may be sent to the 855C over the
RS-232C or IEEE-488 interfaces.

Recapping:

- d ENTR Toggles drive d to angular units
 (3 decimal places);

- d ENTR ...a second time toggles drive d back
to linear units.
Enter a velocity parameter for each axis you want to activate. For example, to set the velocity of drive 1 to 0.4 mm/sec, enter the keystroke sequence: VEL 1 .4 ENTR. As each drive is activated (as its velocity is set to a non-zero value), the 855K display will change to show its current position (along with the current position of all the other active drives). Inactive drives will have "OFF" displayed in place of a position on the 855K.

Now the 855C is ready to move the actuators at the velocities you've entered for them. For example, to extend actuator 1 a distance of 1 mm from its present position, enter the keystroke sequence: MOVE 1 1. ENTR. The actuator will move (at the velocity previously set) to a position 1.0 mm from the absolute origin defined when power was applied (or by the COORDINATE command).

All 855C instructions and data are entered in this same manner from the 855K. Even if you'll be controlling the 855C with a remote computer or other data device, the 855K will often come in handy for quick actuator manipulation and program editing.

Serial Interface Control

This section assumes that you'll be using a remote device connected to the RS-232C serial port to control the 855C.

First, read Sections 3.0 - 3.4 thoroughly before attempting to interface to the 855C via the RS-232C port. Successfully interfacing two RS-232C devices requires complete understanding of the operation of both machines.

Check the voltage selector card position at the AC line connector for compatibility with your line voltage (See 1.1.3 for instructions on changing the line voltage setting). The unit comes configured for 120 Volt operation.

Assuming that the mode of interface operation has been chosen and a properly configured cable is available: connect the remote device's cable to the DB25 connector on the 855C's rear panel, and connect your actuators and the AC line cord to their receptacles on the 855C.

Select the appropriate baud rate at the rear panel of the 855C. 600 baud is recommended for initial operation.
At this point, any actuator may be operated manually by the membrane arrow switches on the 855C front panel (see Section 1.1.1, "Front Panel").

Minding the addressing and talking/listening conventions discussed in Sections 3.0 - 3.3 and 3.5, send a Q2 command string to the 855C from the host computer/bus controller. The 855C will respond with two message strings: "quit to HPIB" and "ready for input".

The 855C is now under IEEE-488 control and is ready for commands and data. To set the velocity of actuator 1 to 0.4 mm/sec and then move it 1.0 mm, enter the command strings: \texttt{V 1 0.4 <CR>} and then \texttt{M 1 1. <CR>} (do not imbed spaces). This will activate drive 1, moving it to an absolute position of 1.0 mm (with respect to the origin defined at power-up or by the CURRENT COORDINATE command). Enter \texttt{C1<CR>}. The 855C will respond with the current position of actuator 1, which will be "1.0000".
855K String

Command Key Format

VELOCITY VEL Vd.nnnn<CR> or Vdn.nnn<CR>

Sets the linear or angular velocity of drive d to 0.nnnn mm/sec or n.nnn degrees/sec. Velocity is always positive and any leading minus sign entered is ignored. The velocities of all drives are set to zero at power-up; the 855K Display will report that a drive with its velocity set to zero is "off". The maximum speed for 850 Series Actuators is 0.4 mm/sec. The maximum speed for Model 496 Rotation Stages is 4.0 degrees/sec. Entering 0 for the drive designator will set the velocities of all four drives simultaneously. For best controller performance, the velocity of axes with no drive connected should be set to zero.

STEP STEP Sdnn.nnnn<CR> or Sdnnn.nnn<CR>

Sets the increment step size of drive d to +nn.nnnn millimeters or ±nn.nnnn degrees, for use with subsequent INCREMENT commands. The step sizes for all drives are set to zero at power-up and may be set anywhere in the range of ±99.999 mm (linear drives) or ±999.999° (rotational drives). Entering 0 for the drive designator sets the step size of all four drives.

CURRENT COORDINATE: CRNT Cdnn.nnnn<CR> or Cdnnn.nnn<CR>

Assigns the value ±nn.nnnn millimeters or ±nn.nnnn degrees to the current position of drive d. This also establishes the "absolute" origin for the drive, used for subsequent positioning with the MOVE and HOME commands. The coordinates of all drives are set to zero at power-up. The range of coordinates allowed is ±99.9999 mm or ±999.999°. If the coordinate assignment would place the drive outside the soft limits defined by the LIMIT command, the assignment is not made and an error message is returned to the controlling device. As with other commands, entering 0 for the drive designator will assign the specified value to the current positions of all four drives.
2.6.2 Backlash Compensation

Mechanical assemblies such as stages and actuators almost always exhibit a small amount of backlash or mechanical play. This, if not compensated, can cause position hysteresis or lag when drive direction is reversed.

However, backlash errors do not occur if the drives consistently move to their destination in the same direction. The 855C always moves its drives to their final positions by approaching in the positive direction (extension or clockwise). Movements in the negative direction (retraction or counter-clockwise) automatically overshoot the target by the amount preset by the 855C's BACKLASH parameter, then approach the target position in the positive direction. This takes up the mechanical slack in the apparatus.

855K String
Command Key Format

BACKLASH BKLH Bd.0nnn<CR> or Bd.nnn<CR>

The 855C's BACKLASH command sets the backlash compensation of drive d to 0.0nnn millimeters (linear actuator) or 0.nnn decimal degrees (rotational drive), up to a maximum of 0.0255 mm or 0.255 decimal degrees. Entering 0 for the drive designator sets the backlash compensation of all four drives.

The power-up default backlash compensation values are 0.0128 mm or 0.128 decimal degrees. These exceed the values normally required to compensate for backlash in typical drives and stages. Each drive's backlash compensation should be set to at least the amount of total system play which may be encountered or which can be determined experimentally. To minimize the temporary position overshoot, the recommended minimum backlash compensation value is given in each Newport drive's data sheet.
Query 855K String

Command Key Format

LIMIT LIMIT Ldr<CR>

The **LIMIT** command, with a drive number and limit but no data, will return the current absolute soft limit of drive d. If r=1, the upper soft limit will be returned; if r=2, the lower soft limit will be returned. Entering **L0r** will return the upper or lower soft limits of all four drives.

FORWARD FWD Fd<CR>

REVERSE REV Rd<CR>

Entered with only a drive designator but with a carriage return, the **FWD** and **REV** commands return the jog-mode step size setting of drive d. If d = 0, the current jog step size settings of all four drives will be returned. See Section 2.7 for a discussion of JOG-mode.

BACKLASH BKLH Bd<CR>

The **BACKLASH** command, with no following data, will return the current backlash compensation setting for drive d. If 0 is entered as the drive designator, the current backlash compensation setting for all four drives will be returned to the controlling device. See Section 2.6.2, "Backlash Compensation."

.C .CRNT .C<CR>

.C will return the status of the PROGRAM RUN instruction step pointer. It is programmable. The response to the **.C** command is "inst # xxx", where xxx is the current value of the instruction step pointer (this is the instruction step that will be executed next if **GO<CR>** is entered). On the 855K, **.C** is entered by pressing **.** and then the **CRNT** key.
855K String

Command Key Format

TERMINATE TERM T (no <CR> required)

This immediately stops all actuator motion when entered in EXECUTE-mode, and control is returned to the currently active port. If a program is running, the program step currently being executed will be completed, the program will halt, and the string "T at xxx" will be returned to the controlling device to indicate program termination at line number xxx. Program execution can be resumed by issuing the GO command.

TERMINATE, when entered as a program statement, serves to halt program execution or mark a program's end; see Sections 2.8.2 and 2.8.3.
2.7 JOG-Mode Instructions

In JOG-mode, the 855C can repetitiously jog any actuator—or all of them—for an individually preset distance and speed. The jog step size and velocity must be set to non-zero values for the drive prior to entering JOG-mode.

JOG-mode is not programmable. The **FWD** and **REV** commands have completely different functions when the 855C is in PROGRAM EDIT-mode (Section 2.8.2).

<table>
<thead>
<tr>
<th>Command</th>
<th>855K String</th>
<th>Key</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORWARD</td>
<td>FWD Fdjj.jjj<CR> or Fdjj.jjjj<CR>,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REVERSE</td>
<td>REV Rdjj.jjj<CR> or Rdjj.jjjj<CR>,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These commands set up the 855C to jog drive d forward or backward by the jog step of jjj.jjjj millimeters or jjjj.jjj degrees. The jog step must be set to a non-zero value before JOG-mode may be initiated. Both commands have the same effect when setting the jog step size parameter; it doesn't matter which is used to set the parameter. Jog motion will occur at the speed set previously for each actuator by the **VELOCITY** command.

After the jog step size for drive d has been set, JOG-mode may be initiated by entering the command **FWDd** or **REVd** without a carriage return (either command may be used to initiate JOG-mode). Subsequent **FWD** and **REV** commands (without a drive designator or carriage return) will jog drive d back and forth by its preset jog step size and at its preset drive velocity.

A carriage return (**855K ENTR key**) terminates JOG-mode. The jog size for drive d, once set, remains in memory until changed or the 855C is powered-down. Once the jog size has been set, the JOG-mode for drive d may be reinitiated by the **FWDd** or **REVd** command, followed by the string of **FWD** and **REV** commands.

Note that if a negative jog step is entered, JOG-mode's **FWD** and **REV** commands switch meanings.
2.8 Programming the 855C

The 855C is in EXECUTE-mode after power-up. Most 855C commands may be stored as program steps in the 855C's internal memory. To do this, the 855C must first be placed in PROGRAM EDIT-mode. To execute the program, the 855C is returned to EXECUTE-mode and then placed in PROGRAM RUN-mode.

The 855C's standard hardware configuration has enough memory to store 300 program steps. The program steps from 000 to 099 are stored in volatile RAM, which is cleared and filled with TERMINATE commands when the 855C is powered-up. Program steps from 100 to 300 are stored in EEPROM and remain until overwritten; there is no difference in procedure for entering or executing programs in the different sections of memory. Several programs, separated by TERMINATE statements, may be resident in memory simultaneously.

2.8.1 Entering PROGRAM EDIT-Mode

<table>
<thead>
<tr>
<th>Command</th>
<th>Key Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM MODE</td>
<td>PRGM P<CR></td>
</tr>
</tbody>
</table>

This command places the 855C in PROGRAM EDIT-mode. Each command string with data, entered in this mode, forms one program step in the 855C's internal memory. The program may then be run when the 855C is returned to EXECUTE-mode.

When the 855C is in PROGRAM EDIT-mode, it sends the contents of the current program step (the one to which the "program pointer" points) to the controlling device. The program step's command mnemonic and data will be preceded by its line number. Entering a new command will overwrite the current program step and move the program pointer to the next program step. Use the NEW command to insert new commands between existing program steps.

EXECUTE MODE EXEC E<CR>

This returns the 855C to EXECUTE-mode for program execution or real-time processing of commands.
855K String

Command Key Format

FORWARD FWD F (no <CR> needed)

REVERSE REV R (no <CR> needed)

These commands, in PROGRAM EDIT-mode, move the program pointer one program step forward or backward, returning the contents of the newly current program step to the controlling device.

.P .PRGM .Pd<CR>

This command may be used in PROGRAM EDIT-mode or EXECUTE-mode to "teach" the 855C a sequence of motions.

After moving an actuator to a desired position by manual or JOG-mode control, enter .Pd<CR> via the controlling device. The 855C will then store in its memory (starting at the current program pointer position):

1) The drive's position as the parameter for an ABSOLUTE DESTINATION command for drive d, and

2) A MOVE command for that drive.

When these commands are executed as programmed commands, drive d will be brought to the same position it was at when the .Pd command was issued (provided the absolute origin had not been changed).

Entering 0 for the drive designator will store the current positions of all four active (non-zero velocity) actuators, followed by a MO command. In EXECUTE-mode, the current program pointer position may be queried by the .C command.
The 855C's volatile RAM (program steps 000-099) is cleared and filled with **TERMINATE** commands at power-up; any program subsequently loaded into this portion of memory will automatically have a **TERMINATE** command immediately following it to properly mark the end of the program. Be sure to write a **TERMINATE** command at the end of any program that extends into the non-volatile EEPROM memory (program steps 100-300), or subsequent program steps from partially-overwritten programs may be executed.

When program steps are inserted or deleted (with the **NEW** and **KILL** commands, respectively), the 855C will move the following block of program instructions to make room for the edit. The block is delimited by strings of two or more **TERMINATE** statements. It is therefore good practice to separate programs with blocks of several **TERMINATE** commands. Then only the desired program will be affected by edits.
855K String

<table>
<thead>
<tr>
<th>Command</th>
<th>Key</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>(NONE)</td>
<td>? (No <CR> needed)</td>
</tr>
</tbody>
</table>

? is used then the 855C is under control from the RS-232C or IEEE-488 ports to query the current position of all actuators and the program status. A ? cannot be entered via the 855K.

The 855C will respond to a ? with a string consisting of the four actuator positions and the program step pointer value at the time the ? was received. This command is not programmable.

Note that TERMINATE, CONTROL, and ? are the only commands which may be issued during a running program. None requires a carriage return. Any other commands issued during program execution are ignored and discarded.
3.0 INTERFACING

The 855C's RS-232C and IEEE-488 ports can be connected to a wide variety of computers, terminals, modems and other data communications and control devices. This allows complete, two-way control and data exchange between the 855C and a remote device.

These communications options offer several additional capabilities. Experimental results and procedures can be easily recorded by the remote or host computer for future reference, 855C programs can be archived, edited and downloaded by the controlling device, and the 855C's operating status and error messages may be monitored at all times and in all modes.

As discussed in Section 2.2, "Assigning Control to the 855K or External Device," only one controlling port can be "active" at a time, though all the ports may have devices connected to them at once. For example, if the RS-232C port has been assigned control, commands from other devices will be ignored, and only the RS-232C port will receive data and messages from the 855C. Control may be reassigned to another port at any time, but again only the active controlling device may do this. (The sole exception is the CNTL key on the 855K keypad, which is discussed in Section 2.8.4.)

The RS-232/IEEE-488 configuration DIP switches, on the back panel of the 855C, set the operational parameters (RS-232C baud rate and IEEE-488 device address) of the two interfaces. These switches must be set to match the 855C interface with that of the remote device. The switch settings are read only when power is first applied; any changes in the switch settings should only be made with the power off. The switch setting options are illustrated in a decal next to them on the rear panel and in Fig. 6.
3.2 Output Data Format

All input commands are echoed to the 855C's output buffer unless the Echo Suppression command is in effect (Section 2.6.5). The output format is the same as the input format (and so will have a carriage return at the end) but will also have a line feed character (ASCII Decimal 10, Hex 0A) appended at the end, even if none was sent. In general, all output strings—including error messages and parameter data—will be terminated by a <CR><LF> sequence.

In the case of a query command input, the response data will be contained in a separate information block, also terminated by a <CR><LF> (carriage return-line feed) sequence. For example, if the current coordinate of drive 1 is 1.2345 mm:

<table>
<thead>
<tr>
<th>Input Data</th>
<th>Output Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1<CR></td>
<td>C1<CR><LF><SP><SP>1.2345<CR><LF></td>
</tr>
</tbody>
</table>

where <SP> is a space character (ASCII Decimal 32, Hex 20)

Other examples:

<table>
<thead>
<tr>
<th>Input Data</th>
<th>Output Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1<CR></td>
<td>I1<CR><LF></td>
</tr>
<tr>
<td>M12.<CR></td>
<td>M12.<CR><LF></td>
</tr>
</tbody>
</table>
If an output buffer overflow occurs, the oldest data is overwritten with new data, and a "#" character (ASCII Decimal 35, Hex 23) is placed at the point in the buffer at which the overflow occurred. Data transfer through the port will continue, and overwriting will stop when the overflow condition ceases to exist.
Preventing Buffer Overflow: The XON/XOFF Protocol

The XON/XOFF protocol is a software convention frequently implemented in RS-232C interfacing to prevent buffer overflow and consequent data loss. The 855C requires this protocol unless special hardware handshaking provisions are devised or other provisions are made to ensure that its buffers do not fill up.

When 900 characters are stored in the 855C's input buffer, the 855C will send an XOFF character (the Control-S or DC3 character, ASCII Decimal 19, or Hex 13) through the RS-232C port (bypassing the output buffer). The controlling computer or device is expected to recognize this character and stop sending characters. As the 855C continues processing, the number of characters queued in its input buffer will drop. When there are 600 characters left in the input buffer, the 855C will send an XON character (the Control-Q or DC1 character, ASCII Decimal 17, Hex 11). This is to instruct the host computer to resume sending characters.

When the 855C output buffer is filling particularly quickly, as might happen if a series of ? commands are received (each requiring a response string of 40 characters), it may send an XOFF character to ensure that the buffer does not overflow later on. When the output buffer has worked back down to 600 characters, the 855C will send an XON character to request that input be resumed.

This protocol works the other way, too. When the 855C receives an XOFF character, it will stop sending from its output buffer and will resume transmission only when an XON character is received. These control characters are given immediate attention by the 855C within one interrupt cycle (1/128 second). They are not queued in the input buffer, nor are they echoed.
The RS-232C Connector

Cabling conventions have not been officially established for the RS-232C interface, but the 855C connector should work with most laboratory computers and terminals without recabling. Note that this port requires a CTS input handshake line and is configured as a DTE device.

Pin 1 is chassis ground.

Pin 7 is signal ground.

Pin 2 (output) is the "Transmitted Data" (TxD) line.

Pin 3 (input) is the "Received Data" (RxD) line.

Pin 4 (output) is the "Ready to Send" (RTS) line. This is set high at 855C power-up and remains high at all times. It merely indicates that the 855C is ready for operation and is not implemented for handshaking. It may be connected to the controlling device's DSR and DCD inputs if that device requires those lines to be high to initiate data transfer.

Pin 5 (input) is the "Clear to Send" (CTS) line. It must be high for the 855C to transmit. If CTS drops low, the 855C will immediately cease transmission. This line is normally connected to the controlling device's RTS line, and may be exploited in hardware handshaking procedures.

Pin 20 (output) is the "Data Terminal Ready" (DTR) line. This line reflects the 855C's input buffer status. It is high when the buffer has room for input and goes low when the buffer is full. It should be attached to the CTS line of the host computer to make the host stop sending characters. (This hookup is similar to that used by some printers.)

Pin 6 (output) is defined in the RS-232C standard as the "Data Set Ready" line. It is not implemented on the 855C and has no effect on operation.

Pin 8 (input) is defined as the "Data Carrier Detect" line. It is not implemented on the 855C and has no effect.
3.5 IEEE-488 Port

The parallel communications port on the 855C is compatible with computers and other devices conforming to the IEEE-488-1978 interface standard. This interface is also known as GPIB (General Purpose Interface Bus) and HPIB (Hewlett-Packard Interface Bus). Interfacing to an IEEE-488 bus is very easy since the standard establishes connector pinouts, signal levels, and so on. The only hardware set-up procedure required is setting the device address, which in the 855C is determined by the RS-232/IEEE-488 DIP switches on its back panel.

Successful interfacing with any bus demands a thorough understanding of the bus structure as well as its handshaking protocol, interrupt criteria, data format requirements, transfer commands, etcetera— for both devices being interfaced. We strongly recommend a review and understanding of the IEEE-488-1978 specifications and operation of the 855C and remote controlling device.

IEEE-488 Bus Operation

The 855C is always set up as a talker-listener; it is incapable of acting as the IEEE-488 bus controller device. It is assumed that a reasonably intelligent bus controller will be used to communicate with it.

Data Transfer—Input

To send commands to the 855C, it is only necessary to address it as a listener and enter commands just as they would be entered by hand with the 855K Keypad/Display. The data can be entered character-by-character or in the form of a data string containing the complete instruction.

The command string format must conform to the rules discussed in Section 3.1. Specifically:

--- Upper case alphabetical characters are required, and

--- The string must be terminated by a carriage return <CR> (ASCII Decimal 13, Hex 0D).
Buffer Control

All data passing into and out of the 855C's IEEE-488 port is transferred through 1,000-character input and output buffers which serve as storage until the data can be processed by the 855C or bus controller. If the buffers are allowed to overflow, data will be lost. The indications and consequences of buffer overflow are discussed in Section 3.3. Buffer overflow can be avoided by careful use of the IEEE-488 bus' information flow features.

Timeouts, Interrupts, and Polling

To efficiently control the flow of information on the IEEE-488 bus, the bus controller must somehow know when and which downline devices have information to send it. The IEEE-bus has three features which are useful for controlling information flow.

Timeouts

A brute-force way to find out if the 855C has information ready to send is to simply attempt an input transfer to the bus controller. If there is data in the 855C output buffer, it will be transferred out. However, if no data is in the buffer, the bus controller will hang unless precautions are taken.

To avoid this, most bus controllers have a TIMEOUT feature that aborts the transfer operation if it is not terminated within a specified amount of time. This allows the bus controller to resume other duties rather than wait to receive data that doesn't exist. We recommend use of the TIMEOUT feature even when more sophisticated schemes are implemented to terminate transfer of data to the 855C.

Interrupts

The IEEE-488 bus has a dedicated Service ReQuest (SRQ) line which may be used by any device on the bus to signal to the bus controller that it needs service. The 855C uses the SRQ line to signal that information is ready in its output buffer. The bus controller can then respond and transfer the data out. The 855C's SRQ will remain active until reset by a Serial Poll performed on the 855C by the bus controller.
4.0 SAMPLE PROGRAMS

Programming the 855C is simple: if you wish, you can simply key in commands just as you would in EXECUTE-mode and have them execute automatically. Programs can do a lot more than just parrot keystrokes, though. The 855C's looping and other program structure capabilities, its simultaneous control of up to four actuators, plus its ability to work closely with sophisticated computers and other data devices, all mean it can perform very complicated precision movements.

Here we present a few sample programs to illustrate the 855C's command mnemonics and typical interfacing with popular computers.

4.1 855C Sample Program: Raster Scan

This program uses two linear actuators to perform a simple raster scan. Drive 1 is the X-axis actuator, and drive 2 drives the Y-axis. The scan is 1.0 mm square and is composed of 50 X-axis sweeps incremented by 0.01 mm. The listing is shown in the approximate format that the 855C would use in listing it to a controlling device. If you key it into the 855C, be sure to remove any imbedded spaces.

<table>
<thead>
<tr>
<th>Step/Instruction/Data</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 C 0</td>
<td>.0000 Set coordinates of all drives to 0</td>
</tr>
<tr>
<td>1 V 1</td>
<td>.0500 Set drive 1 velocity to 0.05 mm/second</td>
</tr>
<tr>
<td>2 V 2</td>
<td>.4000 Set drive 2 velocity to 0.4 mm/second</td>
</tr>
<tr>
<td>3 A 1</td>
<td>1.000 Set absolute destination of 1 to 1 mm</td>
</tr>
<tr>
<td>4 S 2</td>
<td>.0100 Set drive 2 step size to 0.01 mm</td>
</tr>
<tr>
<td>5 M 1</td>
<td>Move 1 to its absolute destination</td>
</tr>
<tr>
<td>6 W 1</td>
<td>Wait for 1 to finish moving</td>
</tr>
<tr>
<td>7 I 2</td>
<td>Increment 2 by its step size</td>
</tr>
<tr>
<td>8 W 2</td>
<td>Wait for 2 to finish moving</td>
</tr>
<tr>
<td>9 H 1</td>
<td>Send 1 home (to its absolute origin)</td>
</tr>
<tr>
<td>10 W 1</td>
<td>Wait for 1 to finish moving</td>
</tr>
<tr>
<td>11 I 2</td>
<td>Increment 2 by its step size</td>
</tr>
<tr>
<td>12 W 2</td>
<td>Wait for 2 to finish moving</td>
</tr>
<tr>
<td>13 J 5 49</td>
<td>Jump to step 5, repeat 49 times</td>
</tr>
<tr>
<td>14 T</td>
<td>Terminate program</td>
</tr>
</tbody>
</table>
RS-232C Serial Port Program

This simple program takes keyboard input and formats it for
the 855C with standard BASIC commands. A simple, 3-wire
interface configuration is assumed. (The 855C's character
echo should be suppressed when in JOG-mode, since no string
terminating character is sent after JOG-mode F and R
commands, as this will cause timeout errors.)

10 ! 3WIRE SERIAL -NUG
20 ! 655
30 CLEAR
40 RESET 10
50 CONTROL 10.3 ; ; 600 BAUD
60 CONTROL 10.4 ; J OR PROTOCOL
70 DIM P$(1000) ! ENTER STRING
80 DIM A$(50) ! OF STRING
90 C1=CHR$(13)
100 ENABLE INTR 19.16
110 ON INTR 10 GOSUB 340
120 SET TIMEOUT 10;300
130 ON TIMEOUT 10 GOTO 390
140 CLEAR
150 ! KEYBOARD INPUT ROUTINE

160 DISP "ENTER COMMAND"
170 INPUT A$
180 CLEAR
190 ! INPUT COMMAND FILTER
200 IF A$="Q1" THEN 270
210 IF A$="" THEN A$=CHR$(13)
220 IF A$="F" THEN 270
230 IF A$="R" THEN 270
240 IF LEN(A$)=3 AND A$[1,13]="F" THEN 270
250 IF LEN(A$)=3 AND A$[1,13]="R" THEN 270
260 A$=A$&C1$
270 OUTPUT 10 USING ";K" ; A$
280 ! BEGIN IDLE LOOP
290 KEY LABEL
300 ON KEY# 1,"COMMAND" GOTO 140
310 FOR X=1 TO 10
320 NEXT X
330 GOTO 290
340 ! INTR SERVICE ROUTINE
350 P$=""
360 ENTER 10 ; P$
370 DISP P$
380 ENABLE INTR 19.16 @ RETURN
390 ! TIMEOUT SERVICE ROUTINE
400 RESET 10
410 CONTROL 10.3 ; 7
420 CONTROL 10.4 ; 3
430 ENABLE INTR 10.16
440 GOTO 290
450 END

Lines 30-130 set up the
RS-232C interface, enable
the port interrupt, set
up the strings, and
establish the timeout
parameters.

Lines 150-260 take the
command string from the
computer keyboard and
prepare it for transfer
to the 855C.

Line 270 outputs the
string to the 855C,
formatted with the
linefeed character
suppressed.

Lines 280-330 are an idle
loop which may be
interrupted for input
from the 855C.

Lines 340-380 service the
port interrupt to bring
855C information into the
computer.

Lines 390-440 service the
timeout interrupt if
required.
5.0 APPENDICES

5.1 Error Messages

The 855C is designed to provide information to the controlling device whenever a command results in an error condition or when an axis exceeds its range of travel. These error messages are formatted by the 855C in the same manner as query responses and character echoes.

"**axis d** position error"

If the limit is not sensed or if the actuator fails to track the controller position by an error exceeding 20,000 counts, the 855C will report this error message. This condition can arise if the actuator is overloaded. The velocity setting for the actuator will be zeroed to protect the actuator.

"**axis d** fwd hard limit"
"**axis d** rev hard limit"
"**axis d** fwd soft limit"
"**axis d** rev soft limit"

The actuator has moved or tried to move past either its physical range of travel or the absolute limit established by the LIMIT command or default.

"limit not set--bad limit"

An attempt was made to set an invalid soft limit with the LIMIT command. The limit setting was not changed.

"pos. not set--out of limit"

An attempt was made to set the current position of the actuator with the CURRENT COORDINATE command outside the limits established by the LIMIT command or by default. The current coordinate of the actuator was not changed.

"all axes are off"

You pressed .Pn, but all axes specified had zero velocities.
<table>
<thead>
<tr>
<th>Command</th>
<th>Key</th>
<th>String</th>
<th>Prog?</th>
<th>Mode</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOME</td>
<td>HOME</td>
<td>Hd<CR></td>
<td>Y</td>
<td>E,P</td>
<td>2.6.4</td>
</tr>
<tr>
<td>INCREMENT</td>
<td>INC</td>
<td>Id<CR></td>
<td>Y</td>
<td>E,P</td>
<td>2.6.4</td>
</tr>
<tr>
<td>JUMP</td>
<td>JUMP</td>
<td>Jiili-ttt</td>
<td>Y</td>
<td>P</td>
<td>2.8.3</td>
</tr>
<tr>
<td>KILL</td>
<td>KILL</td>
<td>K[nnn-rrr]</td>
<td>N</td>
<td>P</td>
<td>2.8.2</td>
</tr>
<tr>
<td>LIMIT</td>
<td>LIMIT</td>
<td>Ldr[+nn.nnnn]<CR></td>
<td>Y</td>
<td>E,P</td>
<td>2.6.1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6.3</td>
</tr>
<tr>
<td>MOVE</td>
<td>MOVE</td>
<td>Md[+nn.nnnn]<CR></td>
<td>Y</td>
<td>E,P</td>
<td>2.6.4</td>
</tr>
<tr>
<td>NEW</td>
<td>NEW</td>
<td>N<CR></td>
<td>N</td>
<td>P</td>
<td>2.8.2</td>
</tr>
<tr>
<td>PROGRAM MODE</td>
<td>PRGM MODE</td>
<td>P<CR></td>
<td>N</td>
<td>E</td>
<td>2.8.1</td>
</tr>
<tr>
<td>QUIT</td>
<td>QUIT</td>
<td>Qp<CR></td>
<td>Y</td>
<td>E,P</td>
<td>2.2</td>
</tr>
<tr>
<td>REVERSE</td>
<td>REV</td>
<td>Rd[+nn.nnnn]<CR></td>
<td>N</td>
<td>E,P,J</td>
<td>2.7,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.8.2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6.1</td>
</tr>
<tr>
<td>STEP</td>
<td>STEP</td>
<td>Sd[+nn.nnnn]<CR></td>
<td>Y</td>
<td>E,P</td>
<td>2.6.1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6.3</td>
</tr>
<tr>
<td>TERMINATE</td>
<td>TERM</td>
<td>T (no <CR>)</td>
<td>Y</td>
<td>E,P,R</td>
<td>2.8.2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.8.3,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6.4</td>
</tr>
<tr>
<td>VELOCITY</td>
<td>VEL</td>
<td>Vd(n.nnnn)<CR></td>
<td>Y</td>
<td>E,P</td>
<td>2.6.1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6.3</td>
</tr>
<tr>
<td>STATUS QUERY</td>
<td>(NONE)</td>
<td>? (no <CR>)</td>
<td>N</td>
<td>R</td>
<td>2.8.4</td>
</tr>
<tr>
<td>ECHO SUPPRESS</td>
<td>(NONE)</td>
<td>!<CR></td>
<td>N</td>
<td>E</td>
<td>2.6.5</td>
</tr>
<tr>
<td>LINEAR/ANGULAR</td>
<td>.</td>
<td>.<CR></td>
<td>Y</td>
<td>E,P</td>
<td>2.4</td>
</tr>
<tr>
<td>STEP POINTER</td>
<td>.CRNT</td>
<td>.C<CR></td>
<td>Y</td>
<td>E,P</td>
<td>2.6.3</td>
</tr>
<tr>
<td>TEACH POSITION</td>
<td>.PRGM</td>
<td>.Pd<CR></td>
<td>N</td>
<td>E,P</td>
<td>2.8.2</td>
</tr>
<tr>
<td>KEYPAD CONTROL</td>
<td>CNTL</td>
<td>(855K only)</td>
<td>N</td>
<td>E,R</td>
<td>2.2, 2.8.4</td>
</tr>
</tbody>
</table>
5.4 System Schematics and Wiring Diagrams

CPU PC BOARD DESCRIPTION
TOP ASSEMBLY -- 855C/K
BLOCK DIAGRAM -- 855C/K
WIRING DIAGRAM -- 855C
ENCLOSURE ASSEMBLY -- 855C
CPU CARD ASSEMBLY
CPU CARD WIRING ASSEMBLY
RSTD-ENCODE 4 PC BOARD ASSEMBLY
RSTD-ENCODE 4 SCHEMATIC
RSTD-SERIAL PC BOARD ASSEMBLY
RSTD SERIAL SCHEMATIC
RSTD-DAC 4 PC BOARD ASSEMBLY
RSTD-DAC 4 SCHEMATIC
ACTUATOR PC BOARD ASSEMBLY
ACTUATOR BOARD SCHEMATIC
POWER UP/DN PC BOARD ASSEMBLY
JOG SWITCH INTERFACE PCB ASSEMBLY
REMOTE TERMINAL CONNECTOR PCB ASSEMBLY
HAND-HELD TERMINAL (855K) PCB ASSEMBLY
HAND-HELD TERMINAL (855K) SCHEMATIC