Table of contents

1 About this manual ... 3
 1.1 Validity ... 3
 1.2 Conventions .. 3
2 Safety ... 5
 2.1 Safety precautions ... 5
 2.2 Protective equipment .. 6
 2.3 Proper use .. 6
 2.4 Improper use .. 7
3 Transport and storage ... 8
 3.1 Transport .. 8
 3.2 Storage ... 8
4 Product description .. 9
 4.1 Product identification ... 9
 4.2 Function .. 9
 4.3 Range of application ... 10
5 Installation ... 11
 5.1 Set-up .. 11
 5.2 Preparatory work .. 11
 5.3 Assembly ... 11
 5.4 Connections to the turbopump 15
6 Operation ... 22
 6.1 Commissioning ... 22
 6.2 Operation modes ... 22
 6.3 Function description .. 23
 6.4 Monitoring of the operation conditions 24
 6.5 Switching off and venting ... 24
7 Maintenance / replacement .. 25
 7.1 Maintenance intervals and responsibilities 25
 7.2 Replacing the operating fluid reservoir 25
 7.3 Replacing the electronic drive unit 27
8 Decommissioning ... 28
 8.1 Shutting down for longer periods 28
 8.2 Re-starting .. 28
 8.3 Disposal .. 28
9 Malfunctions .. 29
 9.1 Rectifying malfunctions .. 29
10 Service ... 30
11 Spare parts HiPace 80 .. 31
12 Accessories ... 32
13 Technical data and dimensions .. 34
 13.1 General .. 34
 13.2 Technical data and dimensions 34
 13.3 Dimensions .. 36
Declaration of conformity .. 37
1 About this manual

1.1 Validity

This operating manual is for customers of Pfeiffer Vacuum. It describes the functioning of the designated product and provides the most important information for safe use of the unit. The description follows applicable EU guidelines. All information provided in this operating manual refer to the current state of the product’s development. The documentation remains valid as long as the customer does not make any changes to the product.

Up-to-date operating instructions can also be downloaded from www.pfeiffer-vacuum.net.

Applicable documents

<table>
<thead>
<tr>
<th>HiPace 80</th>
<th>Operating instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating instructions “Electronic drive unit TC 110”</td>
<td>PT 0204 BN*</td>
</tr>
<tr>
<td>Declaration of conformity</td>
<td>Part of this document</td>
</tr>
</tbody>
</table>

*also available via www.pfeiffer-vacuum.net

For information about other certifications, if applicable, please see the signet on the product or:

- www.tuvdotcom.com
- TUVdotCOM-ID 0000021320

1.2 Conventions

Safety instructions

The safety instructions in Pfeiffer Vacuum operating manuals are the result of risk evaluations and hazard analyses and are oriented on international certification standards as specified by UL, CSA, ANSI Z-535, SEMI S1, ISO 3864 and DIN 4844. In this document, the following hazard levels and information are considered:

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate danger</td>
</tr>
<tr>
<td>Death or very severe injuries can occur.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible danger</td>
</tr>
<tr>
<td>Injuries or severe property damages can occur.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible danger</td>
</tr>
<tr>
<td>Injuries or property damages can occur.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command or note</td>
</tr>
<tr>
<td>Command to perform an action or information about properties, the disregarding of which may result in damage to the product.</td>
</tr>
</tbody>
</table>
Pictograph definitions

Prohibition of an action or activity in connection with a source of danger, the disregarding of which may result in serious accidents.

Warning of a displayed source of danger in connection with operation of the unit or equipment.

Command to perform an action or task associated with a source of danger, the disregarding of which may result in serious accidents.

Instructions in the text

Work instruction: here you have to do something.

Abbreviations used

DCU: Display and operating unit
HPU: Handheld programming unit
TC: Electronic drive unit for turbopump
TPS: Mains pack

Symbols used

The following symbols are used consistently throughout the diagrams:

- High vacuum flange
- Fore-vacuum flange
- Electric connection
- Cooling water connection
- Venting connection
- Sealing gas connection
2 Safety

2.1 Safety precautions

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty to inform</td>
</tr>
<tr>
<td>Each person involved in the installation, operation or maintenance of the vacuum pump must read and observe the safety-related parts of these operating instructions.</td>
</tr>
<tr>
<td>The operator is obligated to make operating personnel aware of dangers originating from the vacuum pump, the pumped medium and the entire system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation and operation of accessories</td>
</tr>
<tr>
<td>Pfeiffer Vacuum pumps can be equipped with a series of adapted accessories. The installation, operation and maintenance of connected devices are described in detail in the operating instructions of the individual components.</td>
</tr>
<tr>
<td>For information on order numbers of components, see "Accessories".</td>
</tr>
<tr>
<td>Use original accessory parts only.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking the safety system against excess rotation speed</td>
</tr>
<tr>
<td>To provide the functioning of the integrated safety system for avoiding excess rotation speed, the pump must run-up from the standstill at least once a year.</td>
</tr>
<tr>
<td>Switch off the pump and await the complete standstill (rotation speed = 0 Hz).</td>
</tr>
<tr>
<td>Run-up the pump according to this operating instructions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger - Electrical installation</td>
</tr>
<tr>
<td>Safe operation after installation is the responsibility of the operator.</td>
</tr>
<tr>
<td>Do not independently modify or change the pump and electrical equipment.</td>
</tr>
<tr>
<td>Make sure that the system is integrated in an emergency off safety circuit.</td>
</tr>
<tr>
<td>Consult Pfeiffer Vacuum for special requirements.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger of electric shock</td>
</tr>
<tr>
<td>In case of defect, the parts connected to the power supply are under voltage.</td>
</tr>
<tr>
<td>Always keep the mains connection freely accessible so you can disconnect it at any time.</td>
</tr>
</tbody>
</table>

- Do not expose any body parts to the vacuum.
- Observe all safety and accident prevention regulations.
- Regularly check the proper observance of all safety measures.
- **Power supply**: The turbopump power supply must apply to the requirements of double insulation between mains input voltage and operating voltage according to the regulations of IEC 61010 and IEC 60950. Therefore Pfeiffer Vacuum recommends to use exclusively original-power packs and -accessories. Only in this case Pfeiffer Vacuum is able to guarantee the compliance of the European and North American guidelines.
- A safe connection to the protective earthing conductor (PE) is recommended (protection class III).
- Do not loosen any plug connection during operations.
- Wait for the rotor to reach standstill before performing work on the high vacuum flange.
• Keep leads and cables well away from hot surfaces (> 70 °C).
• Never fill or operate turbopump with cleaning agent.
• Do not operate the turbopump with open high vacuum flange.
• Do not carry out any unauthorized modifications or conversions to the pump.
• When returning the turbopump observe the shipping instructions.

2.2 Protective equipment

Determined situations concerning the handling of vacuum pumps require wearing of personal protective equipment. The owner, respectively the employer are obligated to provide adequate equipment to any operating persons.

DANGER

Danger to health by hazardous substances during maintenance or installation

Depending on the process vacuum pumps, components or operating fluids can be contaminated by toxic, reactive or radioactive substances.

→ Wear adequate protective equipment during maintenance and repairs or in case of reinstallation.

WARNING

Risk of injury through falling objects

When transporting vacuum pumps by hand, there is a danger through loads slipping and falling down.

→ Carry small and mid-size vacuum pumps two-handed.
→ Carry vacuum pumps > 20 kg by a suitable lifting device.
→ Wear safety shoes with steel toe cap according to directive EN 347.

CAUTION

Risk of injury through hot surfaces

Vacuum pumps can become hot during operation.

→ Allow the pump to cool before maintenance and repairs.
→ If necessary wear protective gloves according to directive EN 420.

CAUTION

Risk of injury through sharp edges

Rotor and stator disks of turbopumps have very sharp edges.

→ Before any working wait for the complete standstill of the pump.
→ Do not reach in the high vacuum flange.
→ If necessary wear protective gloves according to directive EN 420.

2.3 Proper use

NOTE

CE conformity

The manufacturer’s declaration of conformity becomes invalid if the operator modifies the original product or installs additional components.

→ Following installation into a plant and before commissioning, the operator must check the entire system for compliance with the valid EU directives and reassess it accordingly.

• The vacuum pump may only be used to generate a vacuum.
• Only operate the turbopump with an approved backing pump.
2.4 Improper use

Improper use will cause all claims for liability and warranties to be forfeited. Improper use is deemed to be all use for purposes deviating from those mentioned above, especially:

- Pumping of corrosive or explosive media.
- Pumping of condensing vapors.
- Pumping of liquids.
- Pumping of dusts.
- Operation with improper high gas throughput.
- Operation with improper high fore-vacuum pressures.
- Operation with improper gas mode.
- Operation with improper high levels of insulated heat input.
- Venting with improper high venting rates.
- Use of the vacuum pump to generate pressure.
- The operation of the devices in potentially radioactive areas.
- Operation in potentially explosive areas.
- The operation of the devices in systems where the turbopumps are subjected to impact-like stress and vibrations or the effect of periodically occurring forces.
- The use of accessories, which are not named in this manual.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure seal</td>
</tr>
<tr>
<td>The product is sealed at the factory. Damaging or removal of a closure seal leads to the loss of liability and warranty entitlements.</td>
</tr>
<tr>
<td>➔ Do not open the product within its warranty period!</td>
</tr>
<tr>
<td>➔ For process-related shorter maintenance intervals please contact the Pfeiffer Vacuum Service.</td>
</tr>
</tbody>
</table>
3 Transport and storage

3.1 Transport

- Reuse the transport container. Vacuum pumps should be transported or shipped in the original packing only.
- Only remove the protective covers from the high vacuum and the fore-vacuum side immediately before connection.
- Keep the original protective covers.
- Always transport the turbopump in an upright position.

3.2 Storage

- Close the flange openings by using the original protective covers.
- Close further connection ports by using the corresponding protective covers.
- Store the pump only indoors at temperatures between -25 °C and +55 °C.
- In rooms with moist or aggressive atmospheres, the pump must be airproof shrink-wrapped in a plastic bag together with a bag of desiccant.
4 Product description

4.1 Product identification

Pump types

The product designations of Pfeiffer vacuum turbomolecular pumps are self-explanatory and permit conclusions about the different versions. The product designation consists of a family designation (1), the size (2), which is oriented on the pumping speed, and if applicable the additional properties (3) of the pump.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HiPace</td>
<td>80</td>
<td>none = Standard version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U = Upside-down installation orientation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C = Corrosive gas version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P = Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M = Active magnetic bearing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T = Temperature management system</td>
</tr>
</tbody>
</table>

Pump features

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>HiPace 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV flange</td>
<td>DN 63 ISO-K</td>
</tr>
<tr>
<td></td>
<td>DN 63 CF</td>
</tr>
<tr>
<td></td>
<td>DN 40 ISO-KF</td>
</tr>
<tr>
<td>Flange material</td>
<td>Aluminium</td>
</tr>
<tr>
<td></td>
<td>Stainless steel</td>
</tr>
<tr>
<td></td>
<td>Aluminium</td>
</tr>
</tbody>
</table>

To correctly identify the product when communicating with Pfeiffer Vacuum, always have the information from the rating plate available.

Fig. 1: Example for a rating plate

Scope of delivery

- HiPace 80 with TC 110 and 24 VDC ± 5 %
- Protective cover for the high vacuum and the fore-vacuum flange
- Operating instructions

4.2 Function

The turbopump HiPace 80 forms a complete unit together with the electronic drive unit TC 110. For the voltage supply only Pfeiffer Vacuum power supplies may be used (e.g. TPS or DCU).
Cooling
- Convection cooling
- Air cooling (optional)
- Water cooling (optional)

In the case of excess temperature the electronic drive unit reduces the drive power automatically. Depending on the application and the HiPace different cooling variants are selectable.

Rotor bearing
Hybrid bearing TurboDrag pump
- High vacuum side: maintenance-free permanent magnetic bearing.
- Fore-vacuum side: ceramic ball bearing.

Drive
Electronic drive unit TC 110

4.3 Range of application

The pump HiPace 80 must be installed and operated under the following ambient conditions:

<table>
<thead>
<tr>
<th>Installation location</th>
<th>weather protected (indoors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection category</td>
<td>IP 54</td>
</tr>
<tr>
<td>Protection class</td>
<td>III</td>
</tr>
</tbody>
</table>
| Temperature | +5 °C to +30 °C with convection cooling without gas throughput
| | +5 °C to +35 °C with air cooling
| | +5 °C to +40 °C with water cooling |
| Relative humidity | max. 80 %, at T ≤ 31 °C, up to max. 50% at T ≤ 40 °C |
| Atmospheric pressure | 77 kPa - 106 kPa |
| Installation altitude | 2000 m max. |
| Degree of pollution | 2 |
| Permissible surr. mag. field | ≤3 mT |
| Overvoltage category | II |
| Connection voltage TC | 24 VDC ±5% |
5 Installation

5.1 Set-up

When installing the pump, observe the following conditions:

• The ambient conditions specified for the area of use.
• When using a casing heating and a water cooling unit the temperature of the connected flange of the vacuum chamber must not exceed 120 °C.
• The pump may be fastened to the floor only after consultation with Pfeiffer Vacuum.
• It is not allowed to operate the device in systems where impact-like stresses and vibrations or periodically forces occur.

5.2 Preparatory work

➤ Ensure sufficient cooling for the turbopump.
➤ Where magnetic fields > 3 mT are involved, a suitable shielding must be used. Check installation location and consult Pfeiffer Vacuum if needed!
➤ The maximum permissible rotor temperature for the turbopump is 90 °C. If high temperatures arise for process reasons, the radiated heat input must not exceed 0.9 W. Install suitable screening sheets, if necessary (design information on request).

5.3 Assembly

• Ensure the greatest possible cleanliness when installing any high vacuum parts. Unclean components prolong the pump-down time.
• All flange components must be grease-free, dust-free and dry at installation.
• The operating fluid reservoir is already installed and filled for the turbopump HiPace 80.

Earthquake safety

An earthquake can result in contact with the safety bearings. All forces occurring hereby are safely absorbed by the properly installed flange connections.

➤ The vacuum chamber must be secured by the customer against shifting and tipping.
Use of a splinter shield or protection screen

The installation of a Pfeiffer Vacuum centering ring with splinter shield or protection screen in the high vacuum flange protects the turbopump against foreign bodies coming from the chamber. The volume flow rate is reduced.

<table>
<thead>
<tr>
<th>Splinter shield DN 40</th>
<th>Reduced volume flow rate in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H_2</td>
</tr>
<tr>
<td>Splinter shield DN 40</td>
<td>6</td>
</tr>
<tr>
<td>Splinter shield DN 63</td>
<td>3</td>
</tr>
<tr>
<td>Protection screen DN 63</td>
<td>1</td>
</tr>
</tbody>
</table>

Vibration damper

DANGER

Danger from the turbopump and vibration dumper being torn-off

In case of sudden blocking of the rotor, an applied vibration damper cannot compensate any of the occurring forces. There is a danger of the turbopump being torn-off and thereby resulting severest injuries and property damages. Applicable safeguards must be taken to compensate possible occurring torques.

⇒ Definetely consult with Pfeiffer Vacuum.
⇒ Do not exceed the max. permissible temperature at the vibration damper (100° C).

Mounting orientation

When using dry backing pumps Pfeiffer Vacuum HiPace pumps are designed for installation in any orientation.

⇒ Support pipes in front of the vacuum pump or remove them. No force from the pipe system may be exerted on the fixed pump.

⇒ To avoid contamination via the fore-vacuum line when using oil-sealed backing pumps the fore-vacuum flange should always point vertically downward (± 25°).

Fig. 4: Recommended orientation of the fore-vacuum flange

The maximum axial loading capacity of the high vacuum flange is 200 N (equals 20 kg). A one-sided load on the high vacuum flange is not permitted.
Installing the high vacuum flange

In the case the rotor suddenly blocks, the torques arising from the system and the high vacuum flange must be absorbed. Only the components listed in the following can be used to fasten the turbopumps to the high vacuum flange. The components for installing the turbopumps are special designs of Pfeiffer Vacuum. Observe the minimum strength of 170 N/mm² for the flange material.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observe shape tolerances for the counter flange!</td>
</tr>
<tr>
<td>Unevennesses of the customer supplied counter flange can lead to warping of the pump casing despite proper fastening. Leakiness and negative running characteristics can be the result.</td>
</tr>
<tr>
<td>➔ Do not exceed an evenness of max. 0.05 mm for the whole surface.</td>
</tr>
</tbody>
</table>

Installation of

ISO-KF flange with ISO-KF flange

For the installation of the flange connections the following components are available:

- The valid mounting kit of the Pfeiffer Vacuum accessories programme.
- A protection screen or splinter shield can optionally be used.

➔ Mind that the sealing surfaces are not damaged.
➔ Flange the turbopump with the clamping ring.
➔ Tightening torque: 3.7 Nm.

Installation of ISO-K flange with ISO-K flange

For the installation of the flange connections the following components are available:

- The valid mounting kit of the Pfeiffer Vacuum accessories programme.
- A protection screen or splinter shield can optionally be used.

➔ Mind that the sealing surfaces are not damaged.
➔ Connect the flanges according to the drawing and with the component parts of the mounting kit.
➔ Use the required number of 4 claw clamps.
➔ Tighten the claw clamps crosswise in three steps.
➔ Tightening torque: 5, 15, 25 ±2 Nm

Installation of ISO-K flange with ISO-F flange

For the installation of the flange connections the following components are available:

- The valid mounting kit of the Pfeiffer Vacuum accessories programme.
- A protection screen or splinter shield can optionally be used.

NOTE

Mounting of ISO flanges

If the rotor suddenly blocks the connection of high vacuum flanges of types ISO-KF or ISO-K can lead to twisting despite proper installation.

- The tightness of the high vacuum flange is not at risk thereby.
Installation

- Mind that the sealing surfaces are not damaged.
- Connect the flanges according to the drawing and with the component parts of the mounting kit.
- Use the required number of 4 claw grips.
- Tighten the claw grips crosswise in three steps.
- Tightening torque: 3, 10, 16 ±1 Nm.

Installation of CF-flanges

NOTE

Preservation of sealing capacity

Observe the following to preserve sealing capacity:
- Touch seals only with gloves.
- Make sure sealing lips are undamaged.

The connection types for installation of CF to CF flange are "stud screw and blind hole" as well as "hex screw and through hole". The following elements are required:
- The valid mounting kit of the Pfeiffer Vacuum accessories programme.
- A copper seal
- A protection screen or splinter shield can optionally be used.

Stud screw and blind hole

- If used: Insert protective screen or splinter shield with the clamping lugs downward into the high vacuum flange of the turbopump.
- Place the seal exactly in the hollow.
- Connect the flange using 8 stud screws (M8) with washers and nuts and tighten circularly with a torque of 22 ±2 Nm. After this, check the torque, since flowing of the sealing material may make it necessary to tighten the screws.

Hexagon screw and through hole

- If used: Insert protective screen or splinter shield with the clamping lugs downward into the high vacuum flange of the turbopump.
- Place the seal exactly in the hollow.
- Connect the flange using 8 hex screws (M8) with washers and nuts and tighten circularly with a torque of 22 ±2 Nm. After this, check the torque, since flowing of the sealing material may make it necessary to tighten the screws.
5.4 Connections to the turbopump

Electronic drive unit

Turbopumps with integrated electronic drive unit are designed for various applications. Therefore different connection panels are available for the TC 110.

- TC 110 in standard version
- TC 110 PB for Profibus linking
- TC 110 E74 in dependence on specification SEMI E74
- TC 110 DN for DeviceNet linking

Detailed description for function, configuration and operation with the respective connection panel are given in the specific operating instructions for the electronic drive unit.

Connecting the power supply

For voltage supply of the electronic drive unit TC 110, only use original power supplies (e.g. TPS 110 or DCU 110). Use of other power supplies only after consultation with Pfeiffer Vacuum. Connecting cables are available from the Pfeiffer Vacuum accessory programme.

<table>
<thead>
<tr>
<th>Connecting cable</th>
<th>Function</th>
</tr>
</thead>
</table>
| TC 110 - TPS/DCU 110/180 with bridges, RS 485 | • Voltage supply via power supply pack
• Automatic start by bridges on pins 2, 5, 7
• Connection to a display and control unit via RS 485 |
| TC 110 - TPS/DCU 110/180 with accessory ports, RS 485 | • Voltage supply via power supply pack
• Accessory connection via M8 plugs
• Connection to a display and control unit via RS 485 |
| TC 110 - TPS 110/180 with bridges | • Voltage supply via power supply pack
• Automatic start by bridges on pins 2, 5, 7 |
| TC 110 - TPS 110/180 with bridges, with accessory ports | • Voltage supply via power supply pack
• Accessory connection via M8 plugs |

WARNING

Danger of electric shock

In case of defect, the parts connected to the power supply are under voltage.

- Always keep the mains connection freely accessible so you can disconnect it at any time.

- Make sure that the turbopump has the correct supply voltage.

Fig. 5: Connecting the TC 110 to a power supply using a Pfeiffer Vacuum connecting cable

- Switch off switch S1 on the mains pack (position "0").
- Place and fix the connecting cable with the 15-pole mating plug into the connection "X3" on the electronic drive unit.
- Insert the connection cable with the plug in the connection "DC out" on the power supply and close the bayonet lock.

When using a Pfeiffer Vacuum display and control unit:
Connect the display and control unit to the plug "RS485" of the adapter or the connecting cable.

Accessory connection

Fig. 6: Example: Connections on the electronic drive unit TC 110 with adapter TCS 12

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessory connection on the TC 110</td>
</tr>
<tr>
<td>The connection of Pfeiffer Vacuum accessory units to the electronic drive unit TC 110 is only possible by using respective connecting cables or rather adapters.</td>
</tr>
<tr>
<td>➔ Configure the preferred accessory output via RS485 using a Pfeiffer Vacuum display and control unit or a PC.</td>
</tr>
<tr>
<td>➔ Consider the operating instructions "Electronic Drive Unit TC 110".</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessory connection to an electronic drive unit in special design</td>
</tr>
<tr>
<td>Differing to the standard model, drive units in special design (e.g. Profibus panel) can be equipped with accessory connections.</td>
</tr>
<tr>
<td>➔ Refer to the operating instructions of the respective electronic drive unit.</td>
</tr>
<tr>
<td>➔ Connect the control lead of the accessory directly to the electronic drive unit.</td>
</tr>
<tr>
<td>➔ Configure the preferred accessory output via RS485 using a Pfeiffer Vacuum display and control unit or a PC.</td>
</tr>
</tbody>
</table>
Connecting the fore-vacuum side

Recommendation: As backing pump, use a dry-compressing vacuum pump or a rotary vane pump from the Pfeiffer Vacuum programme. The backing pump must generate a vacuum pressure of ≤ 5 mbar.

WARNING

Damage to health due to poisonous gases

Process gases can damage health and contaminate the environment.

- Safely lead away the gas emission from the backing pump!
- Observe all safety recommendations of the gas producer.

NOTE

Design of the fore-vacuum connection regarding sudden twisting of the pump

If the rotor suddenly blocks the connection of high vacuum flanges of types ISO-KF or ISO-K can lead to twisting despite proper installation.

- Keep masses small, which can be installed directly to the pump.
- First connect flexible line elements directly to the turbopump, if necessary.

- With rigid pipe connections: Install bellows for attenuation of vibrations in the connection line.
- Connect the fore-vacuum line with small-flange components or threaded hose couplings. Do not narrow the free cross section of the fore-vacuum flange!
- The backing pump is connected electrically via a relay box.
- Plug in and fix the accessory’s control lead to a free connection port on the connecting cable or adapter of the electronic drive unit.
- Establish the mains supply for the relay box according to the accessory operating instructions.
 - Observe the valid supply voltage of the backing pump.
- Make the settings and control via the interfaces of the electronic drive unit.
Air cooling

Turbopumps with the electronic drive unit TC 110 (24 VDC) may be operated with air cooling up to an ambient temperature of +35 °C.

![Diagram of air cooling unit](image)

Fig. 8: Connecting the air cooling unit

- Fix the Pfeiffer Vacuum air cooling unit to the holes of the turbopump using two screws.
- Plug in and fix the accessory’s control lead to a free connection port on the connecting cable or adapter of the electronic drive unit.
- Make the settings and control via the interfaces of the electronic drive unit.

Venting valve

The Pfeiffer Vacuum venting valve is used for automatic venting in case of shutdown or power failure.

The permissible connection pressure is max. 1.5 bar absolute.

![Diagram of venting valve](image)

Fig. 9: Connecting the venting valve

- Unscrew the venting screw with seal ring from the venting connection.
- Screw in the venting valve with seal ring.
- Plug in and fix the accessory’s control lead to a free connection port on the connecting cable or adapter of the electronic drive unit.
- Make the settings and control via the interfaces of the electronic drive unit.
- If necessary install a venting gas supply (e.g. inert gas) to the intake (G 1/8") of the solenoid valve.
Heating jacket

The turbopump and vacuum chamber can be heated to reach the final pressure more quickly. Use of a heating jacket is only permissible for pumps with the high vacuum flange in stainless steel design. The heating duration depends on the degree of contamination as well as the final pressure to be reached and should be at least 4 hours.

CAUTION

Dangerous excess temperatures

Process-related high temperatures can result in impermissible excess temperatures and thus damage to the turbopump.

- Always use water cooling when a casing heating is used or when the pump is connected to a heated vacuum chamber.

WARNING

Danger of burns

High temperatures arise when the turbopump or vacuum chamber are baked out. As a result, there is a danger of burns from touching hot parts, even after the casing heating is switched off!

- Thermally insulate heating jacket, pump housing and vacuum chamber, if possible during installation.
- Do not touch heating jacket, pump casing and vacuum chamber during bake out.

- When using a casing heating and a water cooling unit the temperature of the connected flange of the vacuum chamber must not exceed 120 °C.
- The maximum permissible rotor temperature for the turbopump is 90 °C. If high temperatures arise for process reasons, the radiated heat input must not exceed 0.9 W. Install suitable screening sheets, if necessary (design information on request).

![Diagram of heating jacket connection](image)

Fig. 10: Connecting the heating jacket

200 Pump casing 200b Fixing screw 200d Warning sticker
200a Heating jacket 200c Heating relay box

- Bend open the outer heating jacket on the tensioning strap and place it sideways on to the cylindrical segment of the pump casing.
 - Do not bend the heating straps!
 - The heating jacket must seat completely on the casing segment.

- Fix the heating jacket with the fixing screw on the casing.
 - Observe the tightening torque for the fixing screw!

<table>
<thead>
<tr>
<th>Fixing screw</th>
<th>Tightening torque in cold condition</th>
<th>Tightening torque during the heating-up</th>
<th>Singular retightening after the cooling down</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>6 Nm</td>
<td>7 Nm</td>
<td>7 Nm</td>
</tr>
<tr>
<td>M6</td>
<td>12 Nm</td>
<td>12 Nm</td>
<td>12 Nm</td>
</tr>
</tbody>
</table>

Tightening torques for fixing screws of heating jackets

- Plug in and fix the accessory’s control lead to a free connection port on the connecting cable or adapter of the electronic drive unit.
Installation

- Make the settings and control via the interfaces of the electronic drive unit.
- Establish the mains supply for the relay box according to the accessory operating instructions.

Sealing gas connection

The turbopump must be operated with sealing gas to protect it, such as in the case of unclean processes or high gas throughput. The supply is made via a sealing gas valve or alternatively via a sealing gas throttle without control. The activation of the control valve for the sealing gas connection is not pre-installed in the electronic drive unit and has to be configured via their interfaces.

The permissible connection pressure is max. 1.5 bar absolute.

- When operating the pump with more than 50 % of the maximum gas throughput, sealing gas must be used to ensure rotor cooling.
- The sealing gas flow rate amounts 7.5 - 9.5 sccm for the HiPace 80.

Sealing gas supply without control valve

![Fig. 11: Connecting the sealing gas throttle](image)

- Unscrew the locking screw with seal ring out of the sealing gas connection.
- Screw the sealing gas throttle with sealing ring into the sealing gas connection.

Sealing gas supply with control valve

![Fig. 12: Connecting the sealing gas valve](image)

- Unscrew the locking screw with seal ring out of the sealing gas connection.
- Screw the sealing gas valve with seal ring into the sealing gas connection.
- Plug in and fix the accessory’s control lead to a free connection port on the connecting cable or adapter of the electronic drive unit.
- Make the settings and control via the interfaces of the electronic drive unit.
- Install the sealing gas supply (e.g. inert gas) via a connection adapter or on the inlet side (G 1/8”) of the control valve.
Water cooling

As an option turbopumps HiPace 80 with TC 110 can be equipped with water cooling.

- In case of increased backing pressure (> 0.1 mbar) and/or operation with gas throughputs, either air or water cooling may be used.
- Generally use water cooling if the ambient temperature is > +35 °C.

Cooling water requirements

<table>
<thead>
<tr>
<th>Cooling water connection</th>
<th>Socket connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hose lines</td>
<td>External diameter 8 mm</td>
</tr>
<tr>
<td></td>
<td>Internal diameter 6 mm</td>
</tr>
</tbody>
</table>

- Cooling water quality: filtrated, mechanically clean, optically clear, no turbidity, no sediments, chemically neutral.
- Oxygen content max.: 4 mg/kg.
- Chloride content max.: 100 mg/kg.
- Water hardness max.: 10 °dH, 12.53 °e, 178 °fH, 178 ppm CaC0₃.
- Consumption of potassium permanganate max.: 10 mg/kg.
- Carbon dioxide content max.: undetectable.
- Ammonia content max.: undetectable.
- Fore-line overpressure max.: 6 bar.
- Cooling water temperature: > dew point, max. 25 °C.
- Cooling water consumption at max. gas throughput: 75 l/h.

Connecting to a cooling water system

- Fix the water cooling unit sideways on the pump lower part.
- Insert hoses for the water cooling fore- and return-line as far as they will go in one cooling water connection each.
- **Recommendation**: install dirt trap in the fore-line.

Fig. 13: Connecting the cooling water
6 Operation

6.1 Commissioning

The following important settings are programmed in the electronic drive unit ex factory.

- Parameter [P:700] Set value run-up time: 8 min
- Parameter [P:027] Gas mode: 0 = heavy gases
- Parameter [P:701] Rotation speed switchpoint: 80% of the nominal rotation speed
- Parameter [P:720] Venting rotation speed at delayed venting: 50% of the nominal rotation speed
- Parameter [P:721] Venting time: 3600 s
- Parameter [P:708] Set value power consumption 70 % (may be only reduced)

- When water cooling is used: Open cooling water supply and check the flow.
- When sealing gas is used: Open the sealing gas supply and check the flow.
- Establish the mains for the power supply.

CAUTION

Danger of the pump being destroyed
Pumping of gases with a higher molecular mass in the wrong gas mode can lead to destruction of the pump.

- Ensure the gas mode is correctly set.
- Contact Pfeiffer Vacuum before using gases with a greater molecular mass (> 80).

6.2 Operation modes

The following operation modes are available:

- Operation without operating unit
- Operation via "X3" connection
- Operation via RS485 and Pfeiffer Vacuum display and control units or PC
- Operation via field bus

Fig. 14: Front and rear view of a TPS mains pack
6.3 Function description

WARNING

Danger due to open high vacuum flange

The rotor of the turbopump turns at high speed. If the high vacuum flange is open, there is a danger of cut injuries and that the pump can be destroyed by objects falling into it.

⇒ Never operate the pump with an open high vacuum flange.

CAUTION

Automatic start

After bridging the contacts Pin 2, 5, 7 on the connection "X3" or using a connecting cable "with bridges" and setting up the supply voltage, the turbopump will run up immediately.

⇒ Switch on the mains supply on the turbopump immediately before operation.

⇒ For operation without the control unit, the respective connecting cable "with bridges" must be in the "X3" connection on the TC 110.

⇒ Switch on the supply voltage with switch S1 on the power supply.

After operating voltage is applied, the TC 110 performs a self-test to check the supply voltage. Once the self test has been successfully completed on the TC 110, the turbopump and the backing pump - if connected - begin to operate.

Operation without operating unit

- Connect the display and control unit to the plug "RS485" of the adapter or the connecting cable.
- Switch on the mains supply on the turbopump immediately before operation.

⇒ Settings are possible via the RS485 by using DCU, HPU or PC.

Operation via "X3" connection

Remote control options are provided via the 15-pole D-Sub connector with the designation "X3" on the electronic drive unit.

⇒ Consider the following manuals for the operation via remote control:
 - Operating instructions "Electronic drive unit TC 110"

Operation with DCU or HPU

⇒ Consider the following manuals for the operation via Pfeiffer Vacuum display and control units:
 - Operating instructions "DCU"
 - Operating instructions "HPU"
 - Operating instructions "Electronic drive unit TC 110"

⇒ Connect the display and control unit to the plug "RS485" of the adapter or the connecting cable.

⇒ Switch on the supply voltage with switch S1 on the power supply or on the DCU 110.

⇒ Settings are possible via the RS485 by using DCU, HPU or PC.

Operation via field bus

Integrating and operating Pfeiffer Vacuum turbopumps in the customer's field bus system is possible for electronic drive units with a corresponding field bus panel.

⇒ Consider the following manuals for the operation via field bus:
 - Operating instructions for the electronic drive unit with the respective connection panel
6.4 Monitoring of the operation conditions

Operating mode display via LED

LEDs in the front panel of the electronic drive unit show basic operating conditions of the turbopump. A differentiated malfunction and warning display is possible only for operation with DCU or HPU.

<table>
<thead>
<tr>
<th>LED</th>
<th>Symbol</th>
<th>Steady OFF</th>
<th>Flashing (1/12 s active)</th>
<th>Blinking (1/2 s active)</th>
<th>Steady ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td></td>
<td>insufficient power supply</td>
<td>Pumping station "OFF" Rotation speed ≤ 1Hz</td>
<td>Pumping station "OFF" Rotation speed > 1 Hz</td>
<td>Pumping station "ON"</td>
</tr>
<tr>
<td>Yellow</td>
<td></td>
<td>no warning</td>
<td></td>
<td></td>
<td>Warning</td>
</tr>
<tr>
<td>Red</td>
<td></td>
<td>no malfunction</td>
<td></td>
<td></td>
<td>Malfunction</td>
</tr>
</tbody>
</table>

Temperature monitoring

The drive power is reduced in case of impermissible motor temperature or impermissibly high housing temperature. This can cause falling below the rotation speed switchpoint and so result in turning off the turbopump.

6.5 Switching off and venting

Switching off

After the turbopump is switched off, it must be vented to avoid contamination due to particles streaming back from the fore-vacuum area.

- Close the fore-vacuum line: Switch off the backing pump or close a fore-vacuum valve.
- Switch off the turbopump on the control unit or via remote control.
- Venting (possibilities, see below)
- For water cooling: Shut off the water supply.

Venting

Manually Venting

- Open the venting screw (included) in the venting connection of the turbopump about one turn.

Venting with Pfeiffer Vacuum Venting Valve

- Enable venting via the functions of the electronic drive unit.
- Settings are possible via the RS485 by using DCU, HPU or PC.

<table>
<thead>
<tr>
<th>Venting rotation speed</th>
<th>Switch off the pumping station</th>
<th>Mains power failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% of the nominal rotation speed</td>
<td>Venting valve opens for 3600 s (1 h, works setting)</td>
<td>Venting valve opens for 3600 s (1 h, works setting)</td>
</tr>
</tbody>
</table>

When mains power is restored the venting procedure is aborted.

Basic information for the rapid venting

Venting of the vacuum chamber in two steps. Ask for details on individual solutions from Pfeiffer Vacuum.

- Vent for 20 seconds at a rate of pressure rise of max. 15 mbar/s.
 - The valve cross section for the venting rate of 15 mbar/s must be adapted to the size of the vacuum chamber.
 - For small vacuum chambers, use the Pfeiffer Vacuum venting valve.
- Then vent with an additional venting valve of any desired size.
7 Maintenance / replacement

7.1 Maintenance intervals and responsibilities

- Clean the turbopump externally with a lint-free cloth and little industrial alcohol.
- Replace the operating fluid reservoir and electronic drive unit yourself.
- Change the operating fluid reservoir at least every 4 years.
- Change the turbopump bearing at least every 4 years.
 - Contact Pfeiffer Vacuum Service.
- Clarify shorter maintenance intervals for extreme loads or impure processes with Pfeiffer Vacuum Service.
- For all other cleaning, maintenance or repair work, please contact your Pfeiffer Vacuum service location.

7.2 Replacing the operating fluid reservoir

WARNING

Poisoning hazard through contact with materials that damage health.

- The operating fluid reservoir and parts of the pump may contain toxic substances from the pumped media.
- Dispose of operating fluid reservoir in accordance with the applicable regulations. Safety data sheet on request or under www.pfeiffer-vacuum.net
- Prevent health hazards or environmental damage due to contamination by means of appropriate safety precautions.
- Decontaminate affected parts before carrying out maintenance work.

NOTE

Lubricant filling

The lubricant reservoir is sufficiently filled with lubricant.

- Turn off the vacuum pump, vent to atmospheric pressure and allow to cool, if necessary.
- Remove the vacuum pump from the system, if necessary.
- Close the flange openings by using the original protective covers.
- Turn the turbopump over onto the closed high vacuum flange.
Unscrew the rubber feet 320 from the pump base part.

Screw out the end cover 7 on the bottom of the turbopump with special tool E. Pay attention to O-ring 305.

Lift out the operating fluid reservoir using two screwdrivers.

Using tweezers, pull out Porex rods (8 pieces).

Remove impurities from the turbopump and the end cover with a clean, lint-free cloth. **Do not use any cleaning fluids!**

Using tweezers, insert new Porex rods (8 pieces).

Push the new operating fluid reservoir up to the O-ring 40c into the pump.

- **Do not** perform any pressure upon the operating fluid reservoir!

Screw in the end cover with the new O-ring. The operating fluid reservoir is brought into the correct axial position by the end cover.

Observe the end cover’s tightening torque **13 Nm ± 10 %**.

Screw rubber feet into the pump base part.
7.3 Replacing the electronic drive unit

CAUTION

Damages to the pump and drive

Even after the mains power is switched off, the subsequently running pump delivers electric power to the electronic drive unit. There is a danger of electric body contact by premature separating the pump from the electronic drive unit.

- Never separate the electronic drive unit from the pump when the mains power is connected or the rotor is running.

NOTE

Operating parameters of the electronic drive unit

The factory operating parameters are always preset with replacement shipments.

- The use of a HPU enables the storing and the reuse of an existing parameter record.
- Reset any individually changed application parameters.
- Refer to the manual "Pumping operations".

![Assembly / disassembly of the TC 110](image)

- Do not exercise any mechanical load on the electronic drive unit.
- Turn off the vacuum pump, vent to atmospheric pressure and allow to cool, if necessary.
- Only separate the pump and the electronic drive unit from each other after disconnecting the supply voltage and the complete standstill of the pump.
- Remove the vacuum pump from the system, if necessary.
- Unscrew Allen head screws (4 pieces) from the electronic drive unit.
- Pull the electronic drive unit off the pump.
- Screw on and connect new electronic drive unit to the turbopump.
 - Tightening torque 0.6 - 0.8 Nm.

Rotation speed set value

The typical nominal rotation speed of a turbopump is factory-set in the electronic drive unit. If the electronic drive unit is replaced or a different pump type is used, the reference set value of the nominal rotation speed must be confirmed. This procedure is part of a redundant safety system for avoiding excess rotation speeds.

<table>
<thead>
<tr>
<th>HiPace</th>
<th>Nominal rotation speed confirmation [P:777]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 / 60 / 80</td>
<td>1500 Hz</td>
</tr>
<tr>
<td>300</td>
<td>1000 Hz</td>
</tr>
</tbody>
</table>

- Adjust the parameter [P:777] according to the pump type.
- **Alternatively:** If no display and control unit is available, please use the "Speed-Configurator" of the spare parts delivery.
8 Decommissioning

8.1 Shutting down for longer periods

| WARNING |
| Contamination of parts and operating fluid by pumped media is possible. |
| Poisoning hazard through contact with materials that damage health. |
| ➔ In the case of contamination, carry out appropriate safety precautions in order to prevent danger to health through dangerous substances. |
| ➔ Decontaminate affected parts before carrying out maintenance work. |

If the turbopump should be shut down for longer than a year:

➔ Remove the vacuum pump from the system, if necessary.
➔ Change the operating fluid reservoir.
➔ Close the high vacuum flange of the turbopump.
➔ Evacuate turbopump via the fore-vacuum flange.
➔ Vent turbopump via the venting connection with oil-free, dry air or inert gas.
➔ Close the flange openings by using the original protective covers.
➔ Close further connection ports by using the corresponding protective covers.
➔ Place pump upright on rubber feet.
➔ Store the pump only indoors at temperatures between -25 °C and +55 °C.
➔ In rooms with moist or aggressive atmospheres, the pump must be airproof shrink-wrapped in a plastic bag together with a bag of desiccant.

8.2 Re-starting

| CAUTION |
| Re-starting |
| The serviceability of the operating fluid of the turbopump without operation is a maximum of 4 years. Before restarting after a shut-down of 4 years or longer, carry out the following work: |
| ➔ Replace the operating fluid reservoir |
| ➔ Replace bearings |
| ➔ Follow the maintenance instructions and inform Pfeiffer Vacuum |

➔ Check turbopump for contamination and moisture.
➔ Clean the turbopump externally with a lint-free cloth and little industrial alcohol.
➔ If necessary, have Pfeiffer Vacuum Service clean the turbopump completely.
➔ If necessary, have the bearings replaced. Take into account the total running time.
➔ Change the operating fluid reservoir.
➔ Installation and commissioning in accordance with the operating instructions.

8.3 Disposal

Products or parts thereof (mechanical and electrical components, operating fluids, etc.) may cause environmental burden.

➔ Safely dispose of the materials according to the locally applicable regulations.
9 Malfunctions

Please note the following instructions should the pump malfunction:

9.1 Rectifying malfunctions

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible causes</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| Pump will not start; none of the built-in LEDs on the TC 110 lights up | • Electrical supply interrupted | ➝ Check plug contacts on the power supply
➤ Check supply lines on the power supply
➤ Check the output voltage (24 VDC) on the connection "DC out" of the power supply
➤ Check the plug contacts on the TC |
| | • Operating voltage incorrect | ➝ Apply correct operating voltage
➤ Observe the rating plate |
| | • No operating voltage applied | ➝ Apply operating voltage |
| | • TC 110 defective | ➝ Exchange the TC 110
➤ Contact the Pfeiffer Vacuum Service |
| Pump will not start; green LED on the TC 110 is flashing | • At operation without control panel: Pins 2-7 and 5-7 are not connected on the "X3" connection | ➝ Connect the pins 2-7 and 5-7 on the "X3" connection
➤ Install the mating plug (scope of delivery) to the "remote" connection. |
| | • At operation via RS485: Bridge at Pin 2-7 prevents control commands | ➝ Remove the bridge between pins 2 and 7 from the "X3" connection
➤ If necessary exchange the connecting cable. |
| | • Voltage drop in the cable too high | ➝ Use a suitable cable |
| Pump does not attain the final rotational speed within the specified run-up time | • Fore-vacuum pressure too high | ➝ Ensure function and suitability of the backing pump |
| | • Leak | ➝ Perform leak detection
➤ Check sealings and flange fastenings
➤ Eliminate leaks |
| | • Gas throughput too high | ➝ Reduce process gas supply |
| | • Rotor is rough-running, bearing defective | ➝ Check the bearing for noises
➤ Contact the Pfeiffer Vacuum Service |
| | • Setpoint for run-up time to low | ➝ Extend the run-up time via DCU, HPU or PC |
| | • Thermal overload:
 – Lack of air ventilation
 – Water flow too low
 – Fore-vacuum pressure too high
 – Ambient temperature too high | ➝ Reduce thermal loads
➤ Ensure adequate cooling
➤ Ensure the cooling water flow
➤ Lower the fore-vacuum pressure
➤ Adjust ambient conditions |
| Pump does not attain the ultimate pressure | • Pump is dirty | ➝ Bake out the pump
➤ Cleaning in case of heavy contamination
 ➝ Contact the Pfeiffer Vacuum Service |
| | • Vacuum chamber, pipes or pump are leaky | ➝ Leak detection starting from the vacuum chamber
➤ Eliminate leaks |
| Unusual noises during operation | • Bearing damage | ➝ Contact the Pfeiffer Vacuum Service |
| | • Rotor damage | ➝ Contact the Pfeiffer Vacuum Service |
| | • Splinter shield or protective screen are loose | ➝ Correct the seat of the splinter shield or the protective screen
➤ Observe the installation notes |
| Red LED on the TC 110 is on | • Collective fault | ➝ Reset by switching the mains OFF/ON
➤ Reset via pin 6 on the "X3" connection
➤ Differentiated malfunction display is possible via DCU or HPU1)
➤ Contact the Pfeiffer Vacuum Service |

1) If no display and control unit is available, please contact the Pfeiffer Vacuum Service.
10 Service

Pfeiffer Vacuum offers first-class service!

- Operating fluid and bearing change on the spot by Pfeiffer Vacuum FieldService
- Maintenance / repair in the nearby ServiceCenter or ServicePoint
- Fast replacement with exchange products in mint condition
- Advice on the most cost-efficient and quickest solution

Detailed information, addresses and forms at: www.pfeiffer-vacuum.net (Service).

Maintenance and repair in the Pfeiffer Vacuum ServiceCenter
The following steps are necessary to ensure a fast, smooth servicing process:

→ Download the forms “Service Request” and “Declaration on Contamination”, ¹)
→ Fill out the “Service Request” form and send it by fax or e-mail to your Pfeiffer Vacuum service address.
→ Include the confirmation on the service request from Pfeiffer Vacuum with your shipment.
→ Fill out the declaration on contamination and include it in the shipment (required!).
→ Dismantle all accessories.
→ Drain the operating fluid (applies for turbopumps with pumping speed > 700 l/s).
→ Leave electronic drive on the pump.
→ Close the flange openings by using the original protective covers.
→ If possible, send pump or unit in the original packaging.

Sending of contaminated pumps or devices
No units will be accepted if they are contaminated with micro-biological, explosive or radioactive substances. “Hazardous substances” are substances and compounds in accordance with the hazardous goods directive (current version). If pumps are contaminated or the declaration on contamination is missing, Pfeiffer Vacuum performs decontamination at the shipper's expense.

→ Neutralise the pump by flushing it with nitrogen or dry air.
→ Close all openings airtight.
→ Seal the pump or unit in suitable protective film.
→ Return the pump/unit only in a suitable and sturdy transport container and send it in while following applicable transport conditions.

Exchange unit
The factory operating parameters are always preset with exchange units. If you use changed parameters for your application, you have to set these again.

Service orders
All service orders are carried out exclusively according to our repair conditions for vacuum units and components.

¹) Forms under www.pfeiffer-vacuum.net
11 Spare parts HiPace 80

<table>
<thead>
<tr>
<th>Item</th>
<th>Designation</th>
<th>Size</th>
<th>Order number</th>
<th>Notes</th>
<th>Pieces</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Electronic drive unit TC 110</td>
<td>according to the rating plate</td>
<td>PM 143 740 :T</td>
<td>depends on the connection panel</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>Operating fluid reservoir</td>
<td>d = 12 mm</td>
<td>P 3695 700 ZD</td>
<td>incl. Porex rods</td>
<td>4</td>
</tr>
</tbody>
</table>

Please also specify model number of the rating plate when ordering accessories or spare parts.

![Diagram of HiPace 80 components](image)
12 Accessories

<table>
<thead>
<tr>
<th>Designation</th>
<th>HiPace™ 80 with TC 110, DN 63 ISO-K</th>
<th>HiPace™ 80 with TC 110, DN 63 CF-F</th>
<th>HiPace™ 80 with TC 110, DN 40 ISO-KF</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS 110, mains pack for wall/standard rail fitting</td>
<td>PM 061 340-T</td>
<td>PM 061 340-T</td>
<td>PM 061 340-T</td>
</tr>
<tr>
<td>TPS 180, mains pack for wall/standard rail fitting</td>
<td>PM 061 341-T</td>
<td>PM 061 341-T</td>
<td>PM 061 341-T</td>
</tr>
<tr>
<td>Wall rail fitting TPS 110/180/310/400</td>
<td>PM 061 392-T</td>
<td>PM 061 392-T</td>
<td>PM 061 392-T</td>
</tr>
<tr>
<td>TPS 111, mains pack 19" rack module 3 RU</td>
<td>PM 061 344-T</td>
<td>PM 061 344-T</td>
<td>PM 061 344-T</td>
</tr>
<tr>
<td>TPS 181, mains pack 19" rack module 3 RU</td>
<td>PM 061 345-T</td>
<td>PM 061 345-T</td>
<td>PM 061 345-T</td>
</tr>
<tr>
<td>Front panel kit for TPS 111</td>
<td>PM 061 393-T</td>
<td>PM 061 393-T</td>
<td>PM 061 393-T</td>
</tr>
<tr>
<td>Front panel kit for TPS 181</td>
<td>PM 061 394-T</td>
<td>PM 061 394-T</td>
<td>PM 061 394-T</td>
</tr>
<tr>
<td>DUC 110, Display control unit incl. power supply</td>
<td>PM C01 820</td>
<td>PM C01 820</td>
<td>PM C01 820</td>
</tr>
<tr>
<td>DUC 180, Display control unit incl. power supply</td>
<td>PM C01 821</td>
<td>PM C01 821</td>
<td>PM C01 821</td>
</tr>
<tr>
<td>DUC 002, Display control unit</td>
<td>PM 061 348-T</td>
<td>PM 061 348-T</td>
<td>PM 061 348-T</td>
</tr>
<tr>
<td>HP 001, handheld programming unit</td>
<td>PM 051 510-T</td>
<td>PM 051 510-T</td>
<td>PM 051 510-T</td>
</tr>
<tr>
<td>Accessories package for HPU - Power supply, software and PC cable</td>
<td>PM 061 005-T</td>
<td>PM 061 005-T</td>
<td>PM 061 005-T</td>
</tr>
<tr>
<td>230 V AC mains cable with Euro-style safety plug, IEC power socket (straight), 3 m</td>
<td>P 4564 309 ZA</td>
<td>P 4564 309 ZA</td>
<td>P 4564 309 ZA</td>
</tr>
<tr>
<td>115 V AC mains cable with UL plug, IEC power socket (straight), 3 m</td>
<td>P 4564 309 ZE</td>
<td>P 4564 309 ZE</td>
<td>P 4564 309 ZE</td>
</tr>
<tr>
<td>208 V AC mains cable with UL plug, 3 m</td>
<td>P 4564 308 ZF</td>
<td>P 4564 308 ZF</td>
<td>P 4564 308 ZF</td>
</tr>
<tr>
<td>Connection cable for linking HiPace with TC 110 to power supply TPS/DCU 110/111/180/181</td>
<td>PM 061 350-T</td>
<td>PM 061 350-T</td>
<td>PM 061 350-T</td>
</tr>
<tr>
<td>Connection cable for linking HiPace with TC 110 to power supply TPS/DCU 110/111/180/181</td>
<td>PM 061 351-T</td>
<td>PM 061 351-T</td>
<td>PM 061 351-T</td>
</tr>
<tr>
<td>Connection cable for HiPace with TC 110</td>
<td>PM 061 543-T</td>
<td>PM 061 543-T</td>
<td>PM 061 543-T</td>
</tr>
<tr>
<td>Connection cable, TC 110 - TPS/DCU 110/180 with accessory ports and bridges</td>
<td>PM 061 552-T</td>
<td>PM 061 552-T</td>
<td>PM 061 552-T</td>
</tr>
<tr>
<td>Mounting kit for HiPace 80, DN 63 ISO-K to DN 63 ISO-F, including coating centering ring, protection screen, claws</td>
<td>PM 016 512-T</td>
<td>PM 016 512-T</td>
<td>PM 016 512-T</td>
</tr>
<tr>
<td>24 V DC venting valve, G 1/8", for connection to TC 110</td>
<td>PM Z01 290</td>
<td>PM Z01 290</td>
<td>PM Z01 290</td>
</tr>
<tr>
<td>Venting flange DN 10KF-G1/8"</td>
<td>PM 033 737-T</td>
<td>PM 033 737-T</td>
<td>PM 033 737-T</td>
</tr>
<tr>
<td>TTV 001, air drier for venting turbopumps</td>
<td>PM Z01 121</td>
<td>PM Z01 121</td>
<td>PM Z01 121</td>
</tr>
<tr>
<td>Air cooling for HiPace 80 with TC 110, plug M8</td>
<td>PM Z01 300</td>
<td>PM Z01 300</td>
<td>PM Z01 300</td>
</tr>
<tr>
<td>Water cooling for HiPace 80, TC 110</td>
<td>PM 016 623-T</td>
<td>PM 016 623-T</td>
<td>PM 016 623-T</td>
</tr>
<tr>
<td>Heating jacket for HiPace 80 with TC 110/TCP 350, 230 V AC, Euro-style safety plug</td>
<td>PM 061 360-T</td>
<td>PM 061 360-T</td>
<td>PM 061 360-T</td>
</tr>
<tr>
<td>Heating jacket for HiPace 80 with TC 110/TCP 350, 208 V AC, UL plug</td>
<td>PM 061 361-T</td>
<td>PM 061 361-T</td>
<td>PM 061 361-T</td>
</tr>
<tr>
<td>Heating jacket for HiPace 80 with TC 110/TCP 350, 115 V AC, UL plug</td>
<td>PM 061 362-T</td>
<td>PM 061 362-T</td>
<td>PM 061 362-T</td>
</tr>
<tr>
<td>Backing pump relay box, single phase 5 A, for TC 110/TCP 350</td>
<td>PM 061 372-T</td>
<td>PM 061 372-T</td>
<td>PM 061 372-T</td>
</tr>
<tr>
<td>Backing pump relay box, single phase 20 A, for TC 110/TCP 350</td>
<td>PM 061 373-T</td>
<td>PM 061 373-T</td>
<td>PM 061 373-T</td>
</tr>
<tr>
<td>TVV 001 fore-vacuum safety valve, 230 V AC</td>
<td>PM Z01 205</td>
<td>PM Z01 205</td>
<td>PM Z01 205</td>
</tr>
<tr>
<td>TVV 001 fore-vacuum safety valve, 115 V AC</td>
<td>PM Z01 206</td>
<td>PM Z01 206</td>
<td>PM Z01 206</td>
</tr>
<tr>
<td>Connection cable TPS 180 - MVP 006-4 with HiPace 80/HiPace 10, 3m</td>
<td>PM 061 399-T</td>
<td>PM 061 399-T</td>
<td>PM 061 399-T</td>
</tr>
<tr>
<td>Control cable 3/2 pole, TC 100 - MVP, 0,5 m</td>
<td>PM 061 433-X</td>
<td>PM 061 433-X</td>
<td>PM 061 433-X</td>
</tr>
<tr>
<td>Sealing gas valve for HiPace 80</td>
<td>PM Z01 310</td>
<td>PM Z01 310</td>
<td>PM Z01 310</td>
</tr>
<tr>
<td>Sealing gas throttle for HiPace 80</td>
<td>PM Z01 316</td>
<td>PM Z01 316</td>
<td>PM Z01 316</td>
</tr>
<tr>
<td>Centering ring, with multifunction coating, DN 63 ISO-K/F</td>
<td>PM 016 206-U</td>
<td>PM 016 206-U</td>
<td>PM 016 206-U</td>
</tr>
<tr>
<td>Centering ring, with multifunction coating and integrated protection screen, DN 63 ISO-K/F</td>
<td>PM 016 208-U</td>
<td>PM 016 208-U</td>
<td>PM 016 208-U</td>
</tr>
<tr>
<td>Centering ring, with multifunction coating and integrated splinter shield, DN 63 ISO-K/F</td>
<td>PM 016 207-U</td>
<td>PM 016 207-U</td>
<td>PM 016 207-U</td>
</tr>
<tr>
<td>Protection screen, DN 63 CF-F</td>
<td>PM 016 333</td>
<td>PM 016 333</td>
<td>PM 016 333</td>
</tr>
<tr>
<td>Splinter screen for Turbopumps, DN 63 CF-F flange</td>
<td>PM 016 312</td>
<td>PM 016 312</td>
<td>PM 016 312</td>
</tr>
<tr>
<td>Centering ring, FPM/Aluminum, DN 40 ISO-KF</td>
<td>PF 110 140-T</td>
<td>PF 110 140-T</td>
<td>PF 110 140-T</td>
</tr>
<tr>
<td>Centering ring, with integrated mesh screen, DN 40 ISO-KF</td>
<td>PF 113 240-T</td>
<td>PF 113 240-T</td>
<td>PF 113 240-T</td>
</tr>
<tr>
<td>Designation</td>
<td>HiPace™ 80 with TC 110, DN 63 ISO-K</td>
<td>HiPace™ 80 with TC 110, DN 63 CF-F</td>
<td>HiPace™ 80 with TC 110, DN 40 ISO-KF</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Centering ring, with integrated splinter shield, DN 40 ISO-KF</td>
<td>PM 006 800-X</td>
<td>PM 006 801-X</td>
<td>PM 006 799-X</td>
</tr>
<tr>
<td>Vibration damper for HiPace 80, DN 63 ISO-K</td>
<td>PM 061 207-T</td>
<td>PM 061 207-T</td>
<td>PM 061 207-T</td>
</tr>
<tr>
<td>Vibration damper for HiPace 80, DN 63 CF-F</td>
<td>PM 061 283-T</td>
<td>PM 061 283-T</td>
<td>PM 061 283-T</td>
</tr>
<tr>
<td>Vibration damper for HiPace 80, DN 40 ISO-KF</td>
<td></td>
<td></td>
<td>PM 006 799-X</td>
</tr>
<tr>
<td>USB converter to RS-485 interface</td>
<td>PM 061 791 -T</td>
<td>PM 061 791 -T</td>
<td>PM 061 791 -T</td>
</tr>
<tr>
<td>Interface cable, 3 m, M12</td>
<td>PM 061 363 -U</td>
<td>PM 061 363 -U</td>
<td>PM 061 363 -U</td>
</tr>
<tr>
<td>Interface cable RS-485, 3 m, M12, straight, 90°</td>
<td>PM 061 207-T</td>
<td>PM 061 207-T</td>
<td>PM 061 207-T</td>
</tr>
<tr>
<td>Y-Connector M12 to RS-485</td>
<td>P 4723 010</td>
<td>P 4723 010</td>
<td>P 4723 010</td>
</tr>
<tr>
<td>Connection cable, plug M12, RJ 45, 3 m</td>
<td>PM 051 726-T</td>
<td>PM 051 726-T</td>
<td>PM 051 726-T</td>
</tr>
<tr>
<td>TCS 11, adapter for TC 110 with interface RS-485</td>
<td>PM 061 856 -U</td>
<td>PM 061 856 -U</td>
<td>PM 061 856 -U</td>
</tr>
<tr>
<td>TCS 12, adapter for TC 110 with interface RS-485 and 2 accessory ports</td>
<td>PM 061 856 -U</td>
<td>PM 061 856 -U</td>
<td>PM 061 856 -U</td>
</tr>
<tr>
<td>Power supply plug TC 110 or plug for interface E74, straight</td>
<td>P 4723 110</td>
<td>P 4723 110</td>
<td>P 4723 110</td>
</tr>
<tr>
<td>Power supply plug TC 110 or plug for interface E74, angled</td>
<td>P 4723 111</td>
<td>P 4723 111</td>
<td>P 4723 111</td>
</tr>
<tr>
<td>Housing for plug, water resistant, 15-pole, D-Sub, IP 54</td>
<td>P 0998 016</td>
<td>P 0998 016</td>
<td>P 0998 016</td>
</tr>
<tr>
<td>Remote plug, water resistant, 26-pole, HD, IP 54</td>
<td>PM 061 880 -T</td>
<td>PM 061 880 -T</td>
<td>PM 061 880 -T</td>
</tr>
<tr>
<td>Power supply plug TPS 110/180/310/400 DC out</td>
<td>P 4723 102</td>
<td>P 4723 102</td>
<td>P 4723 102</td>
</tr>
<tr>
<td>Extension cable for accessory M8 on M8</td>
<td>PM 061 783-T</td>
<td>PM 061 783-T</td>
<td>PM 061 783-T</td>
</tr>
<tr>
<td>Clamping ring clip DN 10-16 ISO-KF</td>
<td>PF 102 016-T</td>
<td>PF 102 016-T</td>
<td>PF 102 016-T</td>
</tr>
<tr>
<td>Tele TC cable, 3 m</td>
<td>PM 061 892</td>
<td>PM 061 892</td>
<td>PM 061 892</td>
</tr>
<tr>
<td>Tele TC cable 110, 3 m</td>
<td>PM 061 773 -T</td>
<td>PM 061 773 -T</td>
<td>PM 061 773 -T</td>
</tr>
<tr>
<td>Mounting kit for HiPace 80, DN 63 ISO-K, including coated centering ring,</td>
<td>PM 016 360-T</td>
<td>PM 016 362-T</td>
<td>PM 016 362-T</td>
</tr>
<tr>
<td>bracket screws</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting kit for HiPace 80, DN 63 ISO-K, including coated centering ring,</td>
<td>PM 016 361-T</td>
<td>PM 016 510-T</td>
<td>PM 016 510-T</td>
</tr>
<tr>
<td>protection screen, clamping screws</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting kit for HiPace 80, DN 63 ISO-K, including coated centering ring,</td>
<td>PM 016 361-T</td>
<td>PM 016 510-T</td>
<td>PM 016 510-T</td>
</tr>
<tr>
<td>splinter shield, bracket screws</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting kit for HiPace 80, DN 63 ISO-K to DN 63 ISO-F, including coated</td>
<td>PM 016 361-T</td>
<td>PM 016 510-T</td>
<td>PM 016 510-T</td>
</tr>
<tr>
<td>centering ring, claws</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection cable TC 110 - TPS/DCU 110/180 with 3 accessory ports without</td>
<td>PM 016 512 -T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bridges, RS-485</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting kit for HiPace 80, DN 63 ISO-K to DN 63 ISO-F, including coated</td>
<td>PM 016 511-T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>centering ring, splinter and claws</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set of hexagon bolts, 8 count, M8, DN 63 CF</td>
<td>PM 016 683-T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set of stud screws, 8 count, M8, DN 63 CF</td>
<td>PM 016 684-T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting kit for HiPace 80, DN 40 ISO-K, including centering ring and</td>
<td>PM 016 625-T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clamping ring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting kit for HiPace 80, DN 40 ISO-KF, splinter shield, clamping ring</td>
<td>PM 016 626-T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13 Technical data and dimensions

13.1 General

Basic principles for the Technical Data of Pfeiffer Vacuum Turbopumps:

- Recommendations of PNEUROP committee PN5
- ISO 5302; 2003: "Vacuum technology - Turbomolecular pumps - Measurement of performance characteristics"
- Ultimate pressure: using a test dome and a 48 hrs. period of baking out
- Gas throughput: water cooling; backing pump = rotary vane pump (10 m³/h)
- Cooling water consumption: at max. gas throughput, cooling water temp. 25 °C
- Integral leak rate: using a Helium concentration of 100 %, period 10 s
- Acoustic pressure: Distance 1 m to the pump

13.2 Technical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HiPace™ 80</th>
<th>HiPace™ 80</th>
<th>HiPace™ 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange (in)</td>
<td>DN 63 ISO-K</td>
<td>DN 63 CF-F</td>
<td>DN 40 ISO-K</td>
</tr>
<tr>
<td>Flange (out)</td>
<td>DN 16 ISO-KF / G 1/4"</td>
<td>DN 16 ISO-KF / G 1/4"</td>
<td>DN 16 ISO-KF / G 1/4"</td>
</tr>
<tr>
<td>Pumping speed for Ar</td>
<td>66 l/s</td>
<td>66 l/s</td>
<td>30 l/s</td>
</tr>
<tr>
<td>Pumping speed for H₂</td>
<td>48 l/s</td>
<td>48 l/s</td>
<td>38 l/s</td>
</tr>
<tr>
<td>Pumping speed for He</td>
<td>58 l/s</td>
<td>58 l/s</td>
<td>41 l/s</td>
</tr>
<tr>
<td>Pumping speed for N₂</td>
<td>67 l/s</td>
<td>67 l/s</td>
<td>35 l/s</td>
</tr>
<tr>
<td>Compression ratio for Ar</td>
<td>> 1 · 10¹¹</td>
<td>> 1 · 10¹¹</td>
<td>> 1 · 10¹¹</td>
</tr>
<tr>
<td>Compression ratio for H₂</td>
<td>1.4 · 10⁵</td>
<td>1.4 · 10⁵</td>
<td>1.4 · 10⁵</td>
</tr>
<tr>
<td>Compression ratio for He</td>
<td>1.3 · 10⁷</td>
<td>1.3 · 10⁷</td>
<td>1.3 · 10⁷</td>
</tr>
<tr>
<td>Compression ratio for N₂</td>
<td>> 1 · 10¹¹</td>
<td>> 1 · 10¹¹</td>
<td>> 1 · 10¹¹</td>
</tr>
<tr>
<td>Gas throughput at full rotational speed for Ar</td>
<td>0.54 mbar l/s</td>
<td>0.54 mbar l/s</td>
<td>0.54 mbar l/s</td>
</tr>
<tr>
<td>Gas throughput at full rotational speed for H₂</td>
<td>2.7 mbar l/s</td>
<td>2.7 mbar l/s</td>
<td>2.7 mbar l/s</td>
</tr>
<tr>
<td>Gas throughput at full rotational speed for He</td>
<td>15.3 mbar l/s</td>
<td>15.3 mbar l/s</td>
<td>15.3 mbar l/s</td>
</tr>
<tr>
<td>Gas throughput at full rotational speed for N₂</td>
<td>1.3 mbar l/s</td>
<td>1.3 mbar l/s</td>
<td>1.3 mbar l/s</td>
</tr>
<tr>
<td>Fore Vacuum max. for Ar</td>
<td>23 mbar</td>
<td>23 mbar</td>
<td>23 mbar</td>
</tr>
<tr>
<td>Fore Vacuum max. for CF₄</td>
<td>20 mbar</td>
<td>20 mbar</td>
<td>20 mbar</td>
</tr>
<tr>
<td>Fore Vacuum max. for H₂</td>
<td>14 mbar</td>
<td>14 mbar</td>
<td>14 mbar</td>
</tr>
<tr>
<td>Fore Vacuum max. for He</td>
<td>22 mbar</td>
<td>22 mbar</td>
<td>22 mbar</td>
</tr>
<tr>
<td>Fore Vacuum max. for N₂</td>
<td>22 mbar</td>
<td>22 mbar</td>
<td>22 mbar</td>
</tr>
<tr>
<td>Run-up time</td>
<td>1.7 min</td>
<td>1.7 min</td>
<td>1.7 min</td>
</tr>
<tr>
<td>Ultimate pressure with OnTool™ DryPump</td>
<td>< 1 · 10⁻⁷ mbar</td>
<td>< 5 · 10⁻⁹ mbar</td>
<td>< 1 · 10⁻⁷ mbar</td>
</tr>
<tr>
<td>Rotation speed ± 2 %</td>
<td>90000 rpm</td>
<td>90000 rpm</td>
<td>90000 rpm</td>
</tr>
<tr>
<td>Rotation speed: variable</td>
<td>20-100 %</td>
<td>20-100 %</td>
<td>20-100 %</td>
</tr>
<tr>
<td>Power characteristic line in gas mode 1, vertex A</td>
<td>80/90000 W/rpm</td>
<td>80/90000 W/rpm</td>
<td>80/90000 W/rpm</td>
</tr>
<tr>
<td>Power characteristic line in gas mode 1, vertex B</td>
<td>80/84000 W/rpm</td>
<td>80/84000 W/rpm</td>
<td>80/84000 W/rpm</td>
</tr>
<tr>
<td>Power characteristic line in gas mode 0, vertex C</td>
<td>56/90000 W/rpm</td>
<td>56/90000 W/rpm</td>
<td>56/90000 W/rpm</td>
</tr>
<tr>
<td>Power characteristic line in gas mode 0, vertex D</td>
<td>65/81000 W/rpm</td>
<td>65/81000 W/rpm</td>
<td>65/81000 W/rpm</td>
</tr>
<tr>
<td>Power characteristic line in gas mode 2, vertex E</td>
<td>80/90000 W/rpm</td>
<td>80/90000 W/rpm</td>
<td>80/90000 W/rpm</td>
</tr>
<tr>
<td>Power characteristic line in gas mode 2, vertex F</td>
<td>80/84000 W/rpm</td>
<td>80/84000 W/rpm</td>
<td>80/84000 W/rpm</td>
</tr>
<tr>
<td>Sound pressure level</td>
<td>≤ 48 dB (A)</td>
<td>≤ 48 dB (A)</td>
<td>≤ 48 dB (A)</td>
</tr>
<tr>
<td>Relative humidity of air</td>
<td>5-85, non-condensing %</td>
<td>5-85, non-condensing %</td>
<td>5-85, non-condensing %</td>
</tr>
<tr>
<td>Protection category</td>
<td>IP 54</td>
<td>IP 54</td>
<td>IP 54</td>
</tr>
<tr>
<td>Connection pressure max. for venting/sealing gas valve</td>
<td>1.5 bar</td>
<td>1.5 bar</td>
<td>1.5 bar</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>24 ± 5 % V DC</td>
<td>24 ± 5 % V DC</td>
<td>24 ± 5 % V DC</td>
</tr>
<tr>
<td>Operating voltage power supply</td>
<td>90-265 V AC</td>
<td>90-265 V AC</td>
<td>90-265 V AC</td>
</tr>
<tr>
<td>Integral leak rate</td>
<td>< 1 · 10⁻⁷ mbar l/s</td>
<td>< 1 · 10⁻⁹ mbar l/s</td>
<td>< 1 · 10⁻⁷ mbar l/s</td>
</tr>
</tbody>
</table>
Technical Data and Dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HiPace™ 80</th>
<th>HiPace™ 80</th>
<th>HiPace™ 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power consumption max.</td>
<td>110 W</td>
<td>110 W</td>
<td>110 W</td>
</tr>
<tr>
<td>Current consumption max.</td>
<td>4.6 A</td>
<td>4.6 A</td>
<td>4.6 A</td>
</tr>
<tr>
<td>Venting connection</td>
<td>G 1/8"</td>
<td>G 1/8"</td>
<td>G 1/8"</td>
</tr>
<tr>
<td>Weight</td>
<td>2.4 kg</td>
<td>3.8 kg</td>
<td>2.4 kg</td>
</tr>
<tr>
<td>Cooling method, standard</td>
<td>Convection</td>
<td>Convection</td>
<td>Convection</td>
</tr>
<tr>
<td>Cooling method, optional</td>
<td>Air/Water</td>
<td>Air/Water</td>
<td>Air/Water</td>
</tr>
<tr>
<td>Cooling water temperature</td>
<td>5-25 °C</td>
<td>5-25 °C</td>
<td>5-25 °C</td>
</tr>
<tr>
<td>Cooling water consumption</td>
<td>75 l/h</td>
<td>75 l/h</td>
<td>75 l/h</td>
</tr>
<tr>
<td>Permissible magnetic field max.</td>
<td>3.3 mT</td>
<td>3.3 mT</td>
<td>3.3 mT</td>
</tr>
<tr>
<td>Interfaces</td>
<td>RS-485, Remote</td>
<td>RS-485, Remote</td>
<td>RS-485, Remote</td>
</tr>
</tbody>
</table>
13.3 Dimensions

Fig. 17: HiPace 80, DN 63 ISO-K

Fig. 18: HiPace 80, DN 63 CF-F

Fig. 19: HiPace 80, DN 40 ISO-KF
Declaration of conformity

according to the EC directive:

- Machinery 2006/42/EC (Annex II, no. 1 A)

We hereby declare that the product cited below satisfies all relevant provisions of EC directive "Machinery" 2006/42/EC.
In addition, the product cited below satisfies all relevant provisions of EC directive "Electromagnetic Compatibility" 2004/108/EC.

The agent responsible for compiling the technical documentation is Mr. Jörg Stanzel, Pfeiffer Vacuum GmbH, Berliner Straße 43, 35614 Aßlar.

HiPace 80

Guidelines, harmonised standards and national standards and specifications which have been applied:

DIN EN ISO 12100-1 : 2004
DIN EN ISO 12100-2 : 2004
DIN EN ISO 14121-1 : 2007
DIN EN 1012-2 : 1996
DIN EN 81010-1 : 2002

Signatures:

M. Bender
Managing Director

Pfeiffer Vacuum GmbH
Berliner Straße 43
35614 Asslar
Germany

(M. Bender)
Managing Director

(Dr. M. Wiemer)
Managing Director

CE/2010
Pfeiffer Vacuum stands for innovative and custom vacuum solutions worldwide. For German engineering art, competent advice and reliable services.

Ever since the invention of the turbopump, we’ve been setting standards in our industry. And this claim to leadership will continue to drive us in the future.