TC 110
Electronic Drive Unit

Operating Instructions
Table of contents

1. **About this manual** ... 3
 1.1 Validity .. 3
 1.2 Conventions ... 3

2. **Safety** ... 4
 2.1 Safety precautions 4
 2.2 Proper use .. 5
 2.3 Improper use ... 5

3. **Product description** ... 6
 3.1 Product identification 6
 3.2 Range of application 6
 3.3 Function ... 6
 3.4 General connection description 6

4. **Connections diagram** .. 7

5. **Connection "X3"** .. 8
 5.1 Pin assignment .. 8
 5.2 Operation via "X3" connection 8

6. **The Pfeiffer Vacuum parameter set** 12
 6.1 General ... 12
 6.2 Parameter overview 12
 6.3 Configuring the connections 15
 6.4 Operation with the Pfeiffer Vacuum parameter set 17

7. **Pfeiffer Vacuum Protocol for "RS485"** 23
 7.1 Telegram frame ... 23
 7.2 Telegrams .. 23
 7.3 Applied data types 24

8. **Malfunctions** .. 25
 8.1 General ... 25
 8.2 Operating mode display via LED 25
 8.3 Error codes ... 25

9. **Accessories** ... 27
 Declaration of conformity 28
1 About this manual

1.1 Validity

This operating manual is for customers of Pfeiffer Vacuum. It describes the functioning of the designated product and provides the most important information for safe use of the unit. The description follows applicable EU guidelines. All information provided in this operating manual refer to the current state of the product’s development. The documentation remains valid as long as the customer does not make any changes to the product.

Up-to-date operating instructions can also be downloaded from www.pfeiffer-vacuum.net.

1.2 Conventions

Safety instructions

The safety instructions in Pfeiffer Vacuum operating manuals are the result of risk evaluations and hazard analyses and are oriented on international certification standards as specified by UL, CSA, ANSI Z-535, SEMI S1, ISO 3864 and DIN 4844. In this document, the following hazard levels and information are considered:

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible danger</td>
</tr>
<tr>
<td>Injuries or property damages can occur.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command or note</td>
</tr>
<tr>
<td>Command to perform an action or information about properties, the disregarding of which may result in damage to the product.</td>
</tr>
</tbody>
</table>

Pictograph definitions

Warning of a displayed source of danger in connection with operation of the unit or equipment.

Command to perform an action or task associated with a source of danger, the disregarding of which may result in serious accidents.

Instructions in the text

⇒ Work instruction: here you have to do something.

Abbreviations used

DCU: Display and operating unit
HPU: Handheld programming unit
TC: Electronic drive unit for turbopump
TPS: Mains pack
Di/Do: Digital input / digital output
Ai/Ao: Analog input / analog output
f: Rotation speed (derivated from frequency in Hz)
[P:000]: Parameter of the electronic drive unit with number
2 Safety

2.1 Safety precautions

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty to inform</td>
</tr>
<tr>
<td>Each person involved in the installation or operation of the unit must read and observe the safety-related parts of these operating instructions.</td>
</tr>
<tr>
<td>➔ The operator is obligated to make operating personnel aware of dangers originating from the unit or the entire system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger - Electrical installation</td>
</tr>
<tr>
<td>Safe operation after installation is the responsibility of the operator.</td>
</tr>
<tr>
<td>➔ Do not independently modify or change the pump and electrical equipment.</td>
</tr>
<tr>
<td>➔ Make sure that the system is integrated in an emergency off safety circuit.</td>
</tr>
<tr>
<td>➔ Consult Pfeiffer Vacuum for special requirements.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger of electric shock</td>
</tr>
<tr>
<td>In case of defect, the parts connected to the power supply are under voltage.</td>
</tr>
<tr>
<td>➔ Always keep the mains connection freely accessible so you can disconnect it at any time.</td>
</tr>
</tbody>
</table>

- **Power supply**: The turbopump power supply must apply to the requirements of double insulation between mains input voltage and operating voltage according to the regulations of IEC 61010 and IEC 60950. Therefore Pfeiffer Vacuum recommends to use exclusively original-power packs and -accessories. Only in this case Pfeiffer Vacuum is able to guarantee the compliance of the European and North American guidelines.
- Observe all safety and accident prevention regulations.
- A safe connection to the protective earthing conductor (PE) is recommended (protection class III).
- Regularly check the proper observance off all safety measures.
- Before carrying out any work disconnect the unit and all associated installations safely from the mains.
- Do not loosen any plug connection during operations.
- The unit has been accredited with protection class IP 30. When installing into ambient conditions, which afford other protection classes, the necessary measures must be taken.
- Keep leads and cables well away from hot surfaces (> 70 °C).
- Only separate the pump and the electronic drive unit from each other after disconnecting the supply voltage and the complete standstill of the pump.
2.2 Proper use

The electronic drive unit TC 110 operates designated Pfeiffer Vacuum turbo-pumps and their accessories.

2.3 Improper use

Improper use will cause all claims for liability and warranties to be forfeited. Improper use is deemed to be all use for purposes deviating from those mentioned above, especially:

- The use of accessories, which are not named in this manual.
- The operation of the devices in potentially radioactive areas.

NOTE

CE conformity
The manufacturer’s declaration becomes invalid if the operator modifies the original product or installs additional components!

Following installation into a plant and before commissioning, the operator must check the entire system for compliance with the valid EU directives and reassess it accordingly.

NOTE

Closure seal
The product is sealed at the factory. Damaging or removal of a closure seal leads to the loss of liability and warranty entitlements.

Do not open the product within its warranty period!

For process-related shorter maintenance intervals please contact the Pfeiffer Vacuum Service.
3 Product description

3.1 Product identification

Product features

The electronic drive unit TC 110 is an integrated component of the turbopump. Its purpose is to drive, monitor and control the entire pump.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>TC 110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection voltage TC</td>
<td>24 V DC ± 5 %</td>
</tr>
<tr>
<td>Connection panel</td>
<td>Standard (X3)</td>
</tr>
<tr>
<td>Turbopump HiPace</td>
<td>10, 60, 80, 300</td>
</tr>
</tbody>
</table>

To correctly identify the product when communicating with Pfeiffer Vacuum, always have the information from the rating plate available.

3.2 Range of application

Pfeiffer Vacuum electronic drive units TC 110 must be installed and operated in the following ambient conditions.

<table>
<thead>
<tr>
<th>Installation location</th>
<th>weather protected (indoors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection category</td>
<td>IP 30</td>
</tr>
<tr>
<td>Protection class</td>
<td>III</td>
</tr>
<tr>
<td>Temperature</td>
<td>+5 °C to +40 °C (up to +35 °C with air cooling)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>max. 80 %, at T ≤ 31 °C, up to max. 50% at T ≤ 40 °C</td>
</tr>
<tr>
<td>Atmospheric pressure:</td>
<td>77 kPa - 106 kPa</td>
</tr>
<tr>
<td>Installation altitude</td>
<td>2000 m max.</td>
</tr>
<tr>
<td>Degree of pollution</td>
<td>2</td>
</tr>
<tr>
<td>Overvoltage category</td>
<td>II</td>
</tr>
</tbody>
</table>

Fig. 1: Standard panel for the TC 110

c Connection “X3”
d Service connection “PV.can”
h LED “Operating display”

3.3 Function

3.4 General connection description

- **PV.can**
 - M12 casing socket with screw coupling and LED for Pfeiffer Vacuum Service purposes.

- **X3**
 - D-sub 15 pole female socket for the connection of a remote control.

- Casing socket on the rear side of the electronic drive unit for the connection to the turbopump.
 - The connection “PV.can” serves to service purposes exclusively.
4 Connections diagram

Fig. 2: Connections diagram and assignment of the TC 110
5 Connection "X3"

Remote control options and voltage supply are provided via the 15-pole D-Sub connector with the designation "X3" on the TC 110.

- Shielded connectors and cables must be used.

The following information display the factory setting. Configuration is possible using the Pfeiffer Vacuum parameter set.

5.1 Pin assignment

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Designation factory settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+24 VDC input</td>
<td>Voltage supply for the electronic drive unit</td>
</tr>
<tr>
<td>2</td>
<td>DI Remote priority</td>
<td>Control via interface "X3"; open: off; V+: set and priority over other digital inputs</td>
</tr>
<tr>
<td>3</td>
<td>DI1</td>
<td>Enable venting; open: off; V+: on</td>
</tr>
<tr>
<td>4</td>
<td>DI2</td>
<td>Heating; open: off; V+: on</td>
</tr>
<tr>
<td>5</td>
<td>DI Pumping station</td>
<td>open: off; V+: on and error acknowledgement</td>
</tr>
<tr>
<td>6</td>
<td>DI Standby</td>
<td>Standby rotation speed; open: off; V+: on</td>
</tr>
<tr>
<td></td>
<td>DI Error acknowledgement</td>
<td>Error acknowledgement: V+ pulse (500 - 2000 ms)</td>
</tr>
<tr>
<td>7</td>
<td>+24 VDC* output (V+)</td>
<td>Reference voltage for all digital inputs</td>
</tr>
<tr>
<td>8</td>
<td>DO1</td>
<td>GND: no; V+: yes (I_{max} = 50 mA/24 V)</td>
</tr>
<tr>
<td>9</td>
<td>DO2</td>
<td>GND: no; V+: yes (I_{max} = 50 mA/24 V)</td>
</tr>
<tr>
<td>10</td>
<td>Accessory output A1</td>
<td>open: off; V+: on</td>
</tr>
<tr>
<td>11</td>
<td>Accessory output B1</td>
<td>open: off; V+: on</td>
</tr>
<tr>
<td>12</td>
<td>AO1</td>
<td>Actual rotation speed; 0-10 VDC is equivalent to 0-100%; R_L > 10 k(\Omega)</td>
</tr>
<tr>
<td>13</td>
<td>RS485</td>
<td>D+</td>
</tr>
<tr>
<td>14</td>
<td>RS485</td>
<td>D-</td>
</tr>
<tr>
<td>15</td>
<td>Ground (GND)</td>
<td>Ground connection for the electronic drive unit; Reference ground for all digital inputs and all outputs</td>
</tr>
</tbody>
</table>

5.2 Operation via "X3" connection

Voltage supply

+24 VDC Input / Pin 1

The electrical connection at "X3" is carried out via connecting cables of the Pfeiffer Vacuum accessories program or by customized configuration on Pin 1 and Pin 15.

+24 VDC* Output / Pin 7

Inputs 2 - 6 are activated by connecting them with +24 VDC to Pin 7 (active high). They can also be activated via an external PLC. The functions are deactivated by "PLC high level" and by "PLC low level".

- PLC high level: +13 V to +33 V
- PLC low level: -33 V to +7 V
- R_i: 7 k\(\Omega\)
The digital inputs at connection "X3" are used to connect various functions of the electronic drive unit. Functions are assigned to the inputs DI1 - DI2 ex factory. These can be configured via interface RS485 and the Pfeiffer Vacuum parameter set.

DI Remote priority / Pin 2

V+: The connection "X3" has operation priority over all other digital inputs.

open: Remote priority inactive

DI1 (Enable venting) / Pin 3

V+: Venting is enabled (venting according to venting mode)

open: Venting locked (no venting is performed)

DI2 (Heating) / Pin 4

V+: Heating on

open: Heating off

DI Pumping station / Pin 5

The turbopumps is placed in operation and connected pumping station components (e.g. backing pump, venting valve, air cooling unit) are triggered. Any ongoing error messages are reset when their cause has been eliminated.

V+: Malfunction acknowledgement and pumping station on

open: Pumping station off

DI Standby - Error acknowledgement / Pin 6

In standby mode, the turbopump operates at a specified rotor speed < nominal rotation speed. Factory setting and recommended operation are 66.7 % of the nominal rotation speed.

V+: Standby activated

V+: Reset ongoing error messages when cause has been eliminated with a pulse of 500 - 2000 ms duration

open: Standby off, operation at nominal rotation speed

The digital outputs at the connection "X3" can be loaded with a maximum of 24 V / 50 mA per output. All outputs listed below are configurable by the Pfeiffer Vacuum parameter set via interface RS485 (description related to factory settings).

DO1 (Rotation speed switch point attained) / Pin 8

Active high after the rotation speed switch point is attained. Rotation speed switch point 1 is factory-set to 80% of the nominal rotation speed. It can, for example, be used for a "pump operational" message.

DO2 (No errors) / Pin 9

When the supply voltage has been established, digital output DO2 permanently outputs 24 VDC which means "no errors". Active low in case of error (collective error message).

Accessory outputs / Pin 10 and Pin 11

The accessory outputs can be loaded with a maximum of 24 V / 200 mA per output. Additional functions can be assigned to the accessory inputs and outputs via DCU, HPU or PC. Works settings:

- Accessory output A1: A connected air cooling unit is activated.
• Accessory output B1: A connected venting valve is activated, if venting release is transmitted via input DI1.

AO1 Analog output 0-10 V DC / Pin 12

A rotation-speed-proportional voltage (0-10 VDC equals 0 - 100 % x f_{Nominal}) can be picked up via the analog output (load R \geq 10 \Omega). Additional functions (optionally current/power) can be assigned to the analog output via DCU, HPU or PC.

RS485

One Pfeiffer Vacuum display and control panel (DCU or HPU) or an external PC can be connected respectively to the electronic drive unit via Pin 13 and Pin 14 of the connection “X3” on the electronic drive unit.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
</table>

Danger of electric shock

The insulation measures of the bus system are designed only for use with safety extra-low voltage.

⇒ Connect only suitable devices to the bus system.

• The group address of the electronic drive unit is 961.
• All units connected to the bus must have differing RS485 device addresses [P:797].

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface série</td>
<td>RS485</td>
</tr>
<tr>
<td>Vitesse de transmission</td>
<td>9600 bauds</td>
</tr>
<tr>
<td>Longueur d’un mot de données</td>
<td>8 bits</td>
</tr>
<tr>
<td>Parité</td>
<td>aucune (no parity)</td>
</tr>
<tr>
<td>Bits de départ</td>
<td>1</td>
</tr>
<tr>
<td>Bits d’arrêt</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Connecting Pfeiffer Vacuum display and control units or PC

⇒ Use the connection cable supplied with the control panel or from the range of accessories.

⇒ The connection of respectively one external operating unit is possible on the interface RS 485.

⇒ A USB interface (PC) can be connected via the USB/RS485-converter.
Cross-linking via the connection RS485

Fig. 4: Cross-linking via connection RS485 with connection cables and accessory

- Establish the connections according to the specification of the interface RS485.
- Connect all units with D+ and D- to the bus.

- The group address of the electronic drive unit is 961.
- All units connected to the bus must have differing RS485 device addresses [P.797].
6 The Pfeiffer Vacuum parameter set

6.1 General

All function-relevant variables of a turbopump are anchored in the electronic drive unit as parameters. Each parameter has a three-digit number and a designation. Parameters can be used via Pfeiffer Vacuum display and control panels or via RS485 with the Pfeiffer Vacuum protocol.

6.2 Parameter overview

Annotation

<table>
<thead>
<tr>
<th>#</th>
<th>Three figure number of the parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Notification of the parameter in a Pfeiffer Vacuum display and control unit</td>
</tr>
<tr>
<td>Designation</td>
<td>Short description of the parameter</td>
</tr>
<tr>
<td>Functions</td>
<td>Functional description of the parameter</td>
</tr>
<tr>
<td>Data type</td>
<td>Type of formatting of the parameter for the use within the Pfeiffer Vacuum protocol</td>
</tr>
<tr>
<td>Access method</td>
<td>R: read access; W: write access</td>
</tr>
<tr>
<td>Unit</td>
<td>Physical unit of the described characteristic</td>
</tr>
<tr>
<td>min / max</td>
<td>Permissible limits for value input</td>
</tr>
<tr>
<td>default</td>
<td>Factory settings (partially specific of the pump type)</td>
</tr>
<tr>
<td>†</td>
<td>Parameter can be stored non volatile in the electronic drive unit and may be reused after resetting of the mains supply.</td>
</tr>
</tbody>
</table>

Operation with DCU

NOTE

Parameter set and Pfeiffer Vacuum display and control unit

Pfeiffer Vacuum display and control units DCU show the basic parameter set by default. Furthermore the DCU contains parameters, which are not positioned in the electronic drive unit.

Parameter [P:794] = 1 (Display of all available parameters).

<table>
<thead>
<tr>
<th>#</th>
<th>Display</th>
<th>Designation</th>
<th>Functions</th>
<th>Data type</th>
<th>Unit</th>
<th>min</th>
<th>max</th>
<th>default</th>
<th>†</th>
</tr>
</thead>
<tbody>
<tr>
<td>340</td>
<td>Pressure</td>
<td>Active pressure value</td>
<td></td>
<td>7</td>
<td>R</td>
<td>mbar</td>
<td>1E-10</td>
<td>1E3</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>Ctr Name</td>
<td>Type of display and control unit</td>
<td></td>
<td>4</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>Ctr Software</td>
<td>Software of display and control unit</td>
<td></td>
<td>4</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>738</td>
<td>Gaugetype</td>
<td>Type of pressure gauge</td>
<td></td>
<td>4</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>794</td>
<td>Param set</td>
<td>Parameterset</td>
<td>0 = basic parameter set; 1 = extended parameter set</td>
<td>7</td>
<td>RW</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>795</td>
<td>Servicelin</td>
<td>Insert service line</td>
<td></td>
<td>7</td>
<td>RW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Control commands

<table>
<thead>
<tr>
<th>#</th>
<th>Display</th>
<th>Designation</th>
<th>Functions</th>
<th>Data type</th>
<th>Unit</th>
<th>min</th>
<th>max</th>
<th>default</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Heating</td>
<td>Heating</td>
<td>0 = off 1 = on</td>
<td>RW</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Standby</td>
<td>Standby</td>
<td>0 = off 1 = on</td>
<td>RW</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>RUTimeCtrl</td>
<td>Run-up time control</td>
<td>0 = off 1 = on</td>
<td>RW</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>ErrorAckn</td>
<td>Error acknowledgement</td>
<td>1 = Error acknowledgement</td>
<td>W</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>PumpingStatn</td>
<td>Pumping station</td>
<td>0 = off 1 = on and error acknowledgement</td>
<td>RW</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>012</td>
<td>EnableVent</td>
<td>Enable venting</td>
<td>0 = no 1 = yes</td>
<td>RW</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>017</td>
<td>CfgSpdSwPt</td>
<td>Configuration rotation speed switch point</td>
<td>0 = Rotation speed switch point 1 1 = Rotation speed switch point 1&2</td>
<td>RW</td>
<td>0</td>
<td>15</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>019</td>
<td>Cfg DO2</td>
<td>Configuration output DO2</td>
<td>0 = Rot. speed switch point attained 1 = No error 2 = Error 3 = Warning 4 = Error and/or warning 5 = Set speed attained 6 = Pump on 7 = Pump accelerates 8 = Pump deaccelerates 9 = always off 10 = always on 11 = Remote priority active 12 = Heating 13 = Backing pump 14 = Sealing gas 15 = Pumping station</td>
<td>RW</td>
<td>0</td>
<td>15</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>023</td>
<td>MotorPump</td>
<td>Motor pump</td>
<td>0 = off 1 = on</td>
<td>RW</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>024</td>
<td>Cfg DO1</td>
<td>Configuration output DO1</td>
<td>0 = Rot. speed switch point attained 1 = No error 2 = Error 3 = Warning 4 = Error and/or warning 5 = Set speed attained 6 = Pump on 7 = Pump accelerates 8 = Pump deaccelerates 9 = always off 10 = always on 11 = Remote priority active 12 = Heating 13 = Backing pump 14 = Sealing gas 15 = Pumping station</td>
<td>RW</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>OpMode BKP</td>
<td>Operation mode backing pump</td>
<td>0 = Continuous operating 1 = Intermitent mode 2 = Delayed switch-on</td>
<td>RW</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>026</td>
<td>SpdSetMode</td>
<td>Rotation speed setting mode</td>
<td>0 = off 1 = on</td>
<td>RW</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>027</td>
<td>GasMode</td>
<td>Gas mode</td>
<td>0 = Heavy Gase 1 = Light Gase 2 = Helium</td>
<td>RW</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>030</td>
<td>VentMode</td>
<td>Venting mode</td>
<td>0 = Delayed venting 1 = No venting 2 = Direct venting</td>
<td>RW</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>035</td>
<td>Cfg Acc A1</td>
<td>Configuration accessory connection A1</td>
<td>0 = Fan (continuous operation) 1 = Venting valve, normally closed 2 = Heating 3 = Backing pump 4 = Fan (temperature controlled) 5 = Sealing gas 6 = always 0 7 = always 1 8 = Power failure venting unit</td>
<td>RW</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>036</td>
<td>Cfg Acc B1</td>
<td>Configuration accessory connection B1</td>
<td>0 = Fan (continuous operation) 1 = Venting valve, normally closed 2 = Heating 3 = Backing pump 4 = Fan (temperature controlled) 5 = Sealing gas 6 = always 0 7 = always 1 8 = Power failure venting unit</td>
<td>RW</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Status requests

<table>
<thead>
<tr>
<th>#</th>
<th>Display</th>
<th>Designation</th>
<th>Functions</th>
<th>Data Type</th>
<th>Unit</th>
<th>min</th>
<th>max</th>
<th>default</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>RemotePrio</td>
<td>Remote priority</td>
<td>0 = no</td>
<td>R</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>SpdSwPtAtt</td>
<td>Rotation speed switch point attained</td>
<td>0 = no, 1 = yes</td>
<td>R</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>303</td>
<td>Error code</td>
<td>Error code</td>
<td></td>
<td>R</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>OvTempElec</td>
<td>Excess temperature electronic drive unit</td>
<td>0 = no, 1 = yes</td>
<td>R</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>OvTempPump</td>
<td>Excess temperature pump</td>
<td>0 = no, 1 = yes</td>
<td>R</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>SetSpdAtt</td>
<td>Set rotation speed attained</td>
<td>0 = no, 1 = yes</td>
<td>R</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>PumpAccel</td>
<td>Pump accelerates</td>
<td>0 = no, 1 = yes</td>
<td>R</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>SetRotSpd</td>
<td>Set rotation speed (Hz)</td>
<td></td>
<td>R Hz</td>
<td>0</td>
<td>399999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>309</td>
<td>ActualSpd</td>
<td>Active rotation speed (Hz)</td>
<td></td>
<td>R Hz</td>
<td>0</td>
<td>399999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>DrvCurrent</td>
<td>Drive current</td>
<td></td>
<td>R A</td>
<td>0</td>
<td>399999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>OpHrsPump</td>
<td>Operating hours pump</td>
<td></td>
<td>R h</td>
<td>0</td>
<td>85535</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312</td>
<td>Fw version</td>
<td>Firmware version electronic drive unit</td>
<td></td>
<td>R</td>
<td>0</td>
<td>85535</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>DrvVolTage</td>
<td>Drive voltage</td>
<td></td>
<td>R V</td>
<td>0</td>
<td>399999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>314</td>
<td>OpHrsElec</td>
<td>Operating hours electronic drive unit</td>
<td></td>
<td>R h</td>
<td>0</td>
<td>85535</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The electronic drive unit is pre-configured in the factory. Thereby the turbopump is immediately operational with the necessary functions. The connections of the electronic drive unit can be configured to suit individual requirements using the parameter set.
Digital outputs on "X3"

Configuration via parameters [P:019] and [P:024].

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = Rotation speed switchpoint attained</td>
<td>active, if switchpoint attained</td>
</tr>
<tr>
<td>1 = No error</td>
<td>active, if failure-free operation</td>
</tr>
<tr>
<td>2 = Error</td>
<td>active, if error message is active</td>
</tr>
<tr>
<td>3 = Warning</td>
<td>active, if warning message is active</td>
</tr>
<tr>
<td>4 = Error and / or warning</td>
<td>active, if error and / or warning is active</td>
</tr>
<tr>
<td>5 = Set rotation speed attained</td>
<td>active, if set rotation speed is attained</td>
</tr>
<tr>
<td>6 = Pump on</td>
<td>active, if Pumping station and Motor is on; No Error</td>
</tr>
<tr>
<td>7 = Pump accelerates</td>
<td>active, if Pumping station is on; Actual rotation speed < Set rotation speed</td>
</tr>
<tr>
<td>8 = Pumpe decelerates</td>
<td>active, if Pumping station is on; Actual rotation speed > Set rotation speed</td>
</tr>
<tr>
<td>9 = always 0</td>
<td>GND for the control of an external device</td>
</tr>
<tr>
<td>10 = always 1</td>
<td>+24 VDC for the control of an external device</td>
</tr>
<tr>
<td>11 = Remote priority active</td>
<td>active, if Remote priority is active</td>
</tr>
<tr>
<td>12 = Heating</td>
<td>Control is equal to parameter [P:001]</td>
</tr>
<tr>
<td>13 = Backing pump</td>
<td>Control is equal to parameter [P:010] and [P:025]</td>
</tr>
<tr>
<td>14 = Sealing gas</td>
<td>Control is equal to parameter [P:050]</td>
</tr>
<tr>
<td>15 = Pumping station</td>
<td>Control is equal to parameter [P:010]</td>
</tr>
</tbody>
</table>

Analog output on "X3"

Configuration via parameter [P:055].

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = Rotation speed</td>
<td>Rotation speed signal: 0 - 10 VDC = 0 - 100 % x f_Nominal</td>
</tr>
<tr>
<td>1 = Power</td>
<td>Power signal; 0 - 10 VDC = 0 - 100 % x P_{max}</td>
</tr>
<tr>
<td>2 = Current</td>
<td>Current signal; 0 - 10 VDC = 0 - 100 % x I_{max}</td>
</tr>
<tr>
<td>3 = always 0 V</td>
<td>always GND</td>
</tr>
<tr>
<td>4 = always 10 V</td>
<td>output of continuously 10 V DC</td>
</tr>
</tbody>
</table>

Accessory connection

Configuration via parameters [P:035] or [P:036].

The standard version electronic drive unit TC 110 only can control two accessory ports via connection cable. Therefore the parameters [P:037] and [P:038] are ineffective.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = Fan (continuous operation)</td>
<td>Control via parameter Pumping station</td>
</tr>
<tr>
<td>1 = Venting valve, normally closed</td>
<td>Control via parameter Enable venting, when using a venting valve which is normally closed.</td>
</tr>
<tr>
<td>2 = Heating</td>
<td>Control via parameters Heating and Rotation speed switchpoint attained</td>
</tr>
<tr>
<td>3 = Backing pump</td>
<td>Control via parameters Pumping station and operation mode backing pump</td>
</tr>
<tr>
<td>4 = Fan (temperature controlled)</td>
<td>Control via parameter Pumping station and temperature thresholds</td>
</tr>
<tr>
<td>5 = Sealing gas</td>
<td>Control via parameters Pumping station and Sealing gas</td>
</tr>
<tr>
<td>6 = always 0</td>
<td>GND for the control of an external device</td>
</tr>
<tr>
<td>7 = always 1</td>
<td>+24 VDC for the control of an external device</td>
</tr>
<tr>
<td>8 = Power failure venting unit</td>
<td>Control via parameter Enable venting, when using a power failure venting unit.</td>
</tr>
</tbody>
</table>
The Pfeiffer Vacuum parameter set

6.4 Operation with the Pfeiffer Vacuum parameter set

Factory settings

The electronic drive unit is pre-programmed in the factory. This guarantees proper, reliable turbopump operation without the need for additional configuration.

Checking the adjustments

Before operating with parameters, check set values and control commands for their suitability for the pumping process.

Gas type dependent operations

Friction causes the rotor to heat up severely under gas load and high rotation speed. To avoid overheating, the electronic drive unit has implemented power-rotation speed-characteristics, whereby the pump can be operated at every rotation speed with the maximum allowable gas load without danger of damage. The maximum power consumption depends on the gas type. Three characteristics are available in order to completely exhaust the pump’s capacity for each gas type.

CAUTION

Danger of the pump being destroyed

Pumping of gases with a higher molecular mass in the wrong gas mode can lead to destruction of the pump.

- Ensure the gas mode is correctly set.
- Contact Pfeiffer Vacuum before using gases with a greater molecular mass (> 80).

- Gas mode "0" for gases with the molecular mass >39, e.g. Ar.
- Gas mode "1" for gases with the molecular mass ≤ 39.
- Gas mode "2" for helium.
- Power characteristics according to the technical data of the turbopump.

Check and set-up the gas mode via [P:027].

Control via interface

Configuration via parameters [P:060] and [P:061].

<table>
<thead>
<tr>
<th>Option [P:060]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = remote</td>
<td>Operation via connection “remote”</td>
</tr>
<tr>
<td>2 = RS485</td>
<td>Operation via connection “RS485”</td>
</tr>
<tr>
<td>4 = PV.can</td>
<td>For service purposes only</td>
</tr>
<tr>
<td>8 = Field bus</td>
<td>Operation via field bus</td>
</tr>
<tr>
<td>16 = E74</td>
<td>Operation via connection “E74”</td>
</tr>
</tbody>
</table>

Digital inputs on "X3"

Configuration via parameters [P:062] and [P:063].

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = deaktiviert</td>
<td>Connection deactivated</td>
</tr>
<tr>
<td>1 = Enable venting</td>
<td>Control is equal to parameter [P:012]</td>
</tr>
<tr>
<td>2 = Heating</td>
<td>Control is equal to parameter [P:001]</td>
</tr>
<tr>
<td>3 = Sealing gas</td>
<td>Control is equal to parameter [P:050]</td>
</tr>
<tr>
<td>4 = Run-up time control</td>
<td>Control is equal to parameter [P:004]</td>
</tr>
<tr>
<td>5 = Rotation speed setting mode</td>
<td>Control is equal to parameter [P:026]</td>
</tr>
<tr>
<td>6 = Motor</td>
<td>Control is equal to parameter [P:023]</td>
</tr>
</tbody>
</table>
The turbopump runs up with maximum power consumption. When the nominal and/or set rotation speed is reached, the pump automatically switches over to the chosen power characteristic of the selected gas mode. Increasing gas load is initially compensated by a rise in power consumption in order to keep the rotation speed constant. Increasing gas friction, however, causes the turbopump to heat up more severely. When the gas type-dependent maximum power is exceeded, the rotation speed of the turbopump is reduced until an equilibrium between permissible power and gas friction is attained.

› To avoid rotation speed fluctuations, Pfeiffer Vacuum recommends setting a somewhat lower frequency in rotation speed setting mode.

Set value power consumption

› Adjust the parameter [P:708] to the desired value in %.

If adjusting the set value power consumption below 100 % the run-up time prolongs. To avoid error messages, the parameter [P:700] RUTimeSVal should be adjusted accordingly.

Run-up time

The run-up of the turbopump is time-monitored ex factory. There are various causes of prolonged run-up times, e.g.:

• Too high gas loads
• Leakage in the system
• The set value run-up time is too low

› Eliminate any external and application-related causes.
› Adjust the run-up time via parameter [P:700].

Adjusting the rotation speed switchpoint

The rotation speed switch point can be used for the message "Pump operational for the process". Overrunning or underrunning the active rotation speed switch point activates or deactivates a signal at the pre-configured output on the electronic drive unit and at the status parameter [P:302].

Rotation speed switchpoint 1

› Adjust the parameter [P:701] to the desired value in %.
› Parameter [P:017] = 0

Signal output and status parameter [P:302] are based on the set value for rotation speed switch point 1 [P:701].
The Pfeiffer Vacuum parameter set

Rotation speed switchpoint 1 & 2

- Adjust the parameter [P:701] to the desired value in %.
- Adjust the parameter [P:719] to the desired value in %.
- Parameter [P:017] = 1

When the pumping station [P:010] is switched on, the rotation speed switch point 1 is the signal generator. When the pumping station is switched off, signal output and status query are based on the rotation speed switch point 2. The signal output is governed by the hysteresis between the two switch points.

Fig. 6: Example for the configuration rotation speed switch point 1 active

Fig. 7: Example for the configuration rotation speed switch point 1+2 active; [P:701] > [P:719]

Fig. 8: Example for the configuration rotation speed switch points 1+2 active; [P:701] < [P:719]
Rotation speed setting mode

The rotation speed setting mode reduces the rotation speed and hence the throughput of the turbopump. The pumping speed of the turbopump changes proportional to rotation speed. Standby mode is ineffective during rotation speed setting mode. The set rotation speed is adjusted by the set value in rotation speed setting mode [P:707]. The rotation speed switch point varies with the set rotation speed. Underrunning or overrunning the set value in rotation speed setting mode activates and deactivates the status signal [P:306] SetSpdAtt respectively.

- Adjust the parameter [P:707] to the desired value in %.
- Parameter [P:026] = 1
- Read the parameters [P:308]/[P:397].

Standby

Pfeiffer Vacuum recommends standby mode for the turbopump during process and production stops. When standby mode is active, the electronic drive unit reduces the rotation speed of the turbopump. The factory setting for the set value in standby mode is 66.7 % of the nominal rotation speed. Underrunning or overrunning the set speed in standby mode activates or deactivates the status signal [P:306] SetSpdAtt.

- Adjust the parameter [P:717] to the desired value in %.
- Parameter [P:002] = 1
- Read the parameters [P:308]/[P:397].

Rotation speed set value

The typical nominal rotation speed of a turbopump is factory-set in the electronic drive unit. If the electronic drive unit is replaced or a different pump type is used, the reference set value of the nominal rotation speed must be confirmed. This procedure is part of a redundant safety system for avoiding excess rotation speeds.

<table>
<thead>
<tr>
<th>HiPace</th>
<th>Nominal rotation speed confirmation [P:777]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 / 60 / 80</td>
<td>1500 Hz</td>
</tr>
<tr>
<td>300</td>
<td>1000 Hz</td>
</tr>
</tbody>
</table>

- Adjust the parameter [P:777] according to the pump type.

Once the nominal rotation speed is attained, the pump will run idle unless additional gas loads are entered. Depending on process or application requirements, the nominal rotation speed can be reduced in rotation speed setting mode or standby mode.

Operation mode backing pump

Operation of a connected backing pump via the electronic drive unit depends on the backing pump type.

<table>
<thead>
<tr>
<th>Operation mode [P:025]</th>
<th>recommended backing pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>"0" continuous operation</td>
<td>all kinds of backing pumps</td>
</tr>
<tr>
<td>"1" Intermittent operation</td>
<td>diaphragm pumps only</td>
</tr>
<tr>
<td>"2" Delayed switching on</td>
<td>all kinds of backing pumps</td>
</tr>
</tbody>
</table>

- Adjust the parameter [P:025] to the desired value.

Continuous operation

With "pumping station on", the electronic drive unit sends a signal to the configured accessory connection to switch on the backing pump. This signal can also be used for controlling a fore-vacuum safety valve.

Intermittent operation (diaphragm pumps only)

Intermittent operation can extend the life expectancy of the membrane of a connected diaphragm pump. Either a diaphragm pump with built-in semiconductor relay or an interconnected relay box with semiconductor relay is required for intermittent operation. The backing pump is switched on and off in dependence of the turbopump’s power consumption. A relation to the supplied fore-vacuum pressure is derived from the power consumption. The switching off and switching on thresh-
The Pfeiffer Vacuum parameter set

Pfeiffer Vacuum parameter set for the backing pump are adjustable. Fluctuations in the power consumption of idling turbopumps and type-dependent varying fore-vacuum pressures of the backing pumps require the switching thresholds to be set separately for the intermittent mode.

Pfeiffer Vacuum recommends the intermittent mode between 5 and 10 mbar. A pressure gauge and a dosing valve are required to set the switching thresholds.

1. Switch on the vacuum system via the function “pumping station” and await the run-up.
2. Generate a fore-vacuum pressure of 10 mbar by gas inlet via dosing valve.
3. Read and note the parameter \[P:316 \].
4. Adjust the switch on threshold backing pump via parameter \[P:711 \] to the determined drive power for a fore-vacuum pressure of 10 mbar.
5. Reduce the fore-vacuum pressure to 5 mbar.
6. Read and note the parameter \[P:316 \].
7. Adjust the switch off threshold backing pump via parameter \[P:710 \] to the determined drive power for a fore-vacuum pressure of 5 mbar.

Delayed switching on

Switching on the turbopump and the backing pump at the same time can result in unwanted gas flows. Depending on process or application requirements, the backing pump can be switched on with a delay. The switch-on delay depends on the rotation speed of the turbopump and is fixed in the electronic drive unit at 6 Hz. The switch-on delay signal can also be used for switching a fore-vacuum safety valve.

Switching on the pumping station

The function “pumping station” comprises turbopump operation with control of all connected accessories (e.g. backing pump).

1. Switch on the supply voltage with switch S1 on the power supply.
2. Parameter \[P:023 \] = 1 (default)
3. Parameter \[P:010 \] = 1

Ongoing (and removed) error messages are reset. After a successfully completed self-test, the electronic drive unit sets the turbopump motor and all connected accessories into operation depending on their configuration.

When the pumping station is activated, the motor of the turbopump can be switched off and on via the function \[P:023 \].

Switching off the pumping station

1. Parameter \[P:010 \] = 0

The electronic drive unit switches off the turbopump and activates preset accessory options (e.g. venting).

1. Wait for the complete standstill of the pump.
2. Cut off the supply voltage with switch S1 on the power supply.

Operation with accessories

Depending on the configuration, various accessories can be connected to the turbopump and controlled via parameter of the electronic drive unit.

Heating

1. Switch on or off the heating via parameter \[P:001 \].

The activation of a connected casing heating depends on rotation speed switch point 1 (factory setting: 80 % x f_Nominal).
Fan

Two options in the connection configuration enable continuous or temperature controlled operation of a connected air cooling unit (see p. 15, chap. 6.3). Threshold values are type-specific and are anchored in the electronic drive unit.

Sealing gas valve

➤ Switch on or off a sealing gas valve which is connected to a pre-configured output via parameter [P:050].

Vent modes

The turbopump can be vented only after the function "pumping station" has been switched off. Signals are sent to configured outputs with a fixed delay of 6 s. There are three options for operation with a venting valve connected.

➤ Enable venting via parameter [P:012].
➤ Select the venting mode via parameter [P:030].

Delayed venting

Start and venting time after "pumping station off" are configurable and depend on the rotation speed of the turbopump.

➤ Parameter [P:030] = 0
➤ Adjust the venting rotation speed in % of the nominal rotation speed via parameter [P:720].
➤ Adjust the venting time in s via parameter [P:721].

If the venting rotation speed is underrun, the venting valve will open for the set venting time. In the event of a power failure, venting will occur if the set venting rotation speed is underrun. In this case, the venting period depends on the residual energy delivered by the moving rotor. When power is restored, the venting process is interrupted.

No venting

No venting is performed during this operation mode.

➤ Parameter [P:030] = 1

Direct venting

Start and venting time are not configurable. Venting starts with a delay of 6 s after "pumping station off". When the function "pumping station" is switched on renewed, the venting valve closes automatically. In the event of a power failure, venting will occur if an anchored type-specific rotation speed is underrun. When power is restored, the venting process is interrupted.

➤ Parameter [P:030] = 2

Monitoring the thermal load

If threshold values are overrun, output signals from temperature sensors allow the pump to be brought to a safe condition. Depending on pump type, temperature threshold values for warnings and error messages are saved fixed in the electronic drive unit. For information purposes, various status queries are prepared in the parameter set.
7 Pfeiffer Vacuum Protocol for "RS485"

7.1 Telegram frame

The telegram frame of the Pfeiffer Vacuum protocol contains only ASCII code characters [32; 127], the exception being the end character of the message CR. Basically, a master (e.g., a PC) sends a telegram, which is answered by a slave (e.g., electronic drive unit).

<table>
<thead>
<tr>
<th>a_2</th>
<th>a_1</th>
<th>a_0</th>
<th>n_2</th>
<th>n_1</th>
<th>n_0</th>
<th>l_1</th>
<th>l_0</th>
<th>d_n</th>
<th>...</th>
<th>d_0</th>
<th>c_2</th>
<th>c_1</th>
<th>c_0</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_2 - a_0</td>
<td>Unit address for slave \square</td>
<td></td>
</tr>
<tr>
<td>n_2 - n_0</td>
<td>Pfeiffer Vacuum parameter numbers</td>
<td></td>
</tr>
<tr>
<td>l_1 - l_0</td>
<td>Data length d_n - d_0</td>
<td></td>
</tr>
<tr>
<td>d_n - d_0</td>
<td>Data in data type concerned (siehe S. 24, Kap. 7.3)</td>
<td></td>
</tr>
<tr>
<td>c_2 - c_0</td>
<td>Checksum (sum of ASCII values of cells a_2 to d_0) modulo 256</td>
<td></td>
</tr>
</tbody>
</table>

CR carriage return (ASCII 13)

a_2 - a_0 Unit address for slave \square |

- Individual address of the unit ["001"; "255"]
- Group address "9xx" for all identical units (no response)
- Global address "000" for all units on the bus (no response)

* Action (siehe S. 23, Kap. 7.2)

n_2 - n_0	Pfeiffer Vacuum parameter numbers
l_1 - l_0	Data length d_n - d_0
d_n - d_0	Data in data type concerned (siehe S. 24, Kap. 7.3)

| c_2 - c_0 | Checksum (sum of ASCII values of cells a_2 to d_0) modulo 256 |

| CR carriage return (ASCII 13) |

7.2 Telegrams

Data request $\square \Rightarrow \square ?$

<table>
<thead>
<tr>
<th>a_2</th>
<th>a_1</th>
<th>a_0</th>
<th>n_2</th>
<th>n_1</th>
<th>n_0</th>
<th>l_1</th>
<th>l_0</th>
<th>d_n</th>
<th>...</th>
<th>d_0</th>
<th>c_2</th>
<th>c_1</th>
<th>c_0</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_2 - a_0</td>
<td>Unit address for slave \square</td>
<td></td>
</tr>
<tr>
<td>n_2 - n_0</td>
<td>Pfeiffer Vacuum parameter numbers</td>
<td></td>
</tr>
<tr>
<td>l_1 - l_0</td>
<td>Data length d_n - d_0</td>
<td></td>
</tr>
<tr>
<td>d_n - d_0</td>
<td>Data in data type concerned (siehe S. 24, Kap. 7.3)</td>
<td></td>
</tr>
</tbody>
</table>

Control command $\square \Rightarrow \square !$

<table>
<thead>
<tr>
<th>a_2</th>
<th>a_1</th>
<th>a_0</th>
<th>n_2</th>
<th>n_1</th>
<th>n_0</th>
<th>l_1</th>
<th>l_0</th>
<th>d_n</th>
<th>...</th>
<th>d_0</th>
<th>c_2</th>
<th>c_1</th>
<th>c_0</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_2 - a_0</td>
<td>Unit address for slave \square</td>
<td></td>
</tr>
<tr>
<td>n_2 - n_0</td>
<td>Pfeiffer Vacuum parameter numbers</td>
<td></td>
</tr>
<tr>
<td>l_1 - l_0</td>
<td>Data length d_n - d_0</td>
<td></td>
</tr>
<tr>
<td>d_n - d_0</td>
<td>Data in data type concerned (siehe S. 24, Kap. 7.3)</td>
<td></td>
</tr>
</tbody>
</table>

Data response / control command understood $\square \Rightarrow \square \checkmark$

<table>
<thead>
<tr>
<th>a_2</th>
<th>a_1</th>
<th>a_0</th>
<th>n_2</th>
<th>n_1</th>
<th>n_0</th>
<th>l_1</th>
<th>l_0</th>
<th>d_n</th>
<th>...</th>
<th>d_0</th>
<th>c_2</th>
<th>c_1</th>
<th>c_0</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_2 - a_0</td>
<td>Unit address for slave \square</td>
<td></td>
</tr>
<tr>
<td>n_2 - n_0</td>
<td>Pfeiffer Vacuum parameter numbers</td>
<td></td>
</tr>
<tr>
<td>l_1 - l_0</td>
<td>Data length d_n - d_0</td>
<td></td>
</tr>
<tr>
<td>d_n - d_0</td>
<td>Data in data type concerned (siehe S. 24, Kap. 7.3)</td>
<td></td>
</tr>
</tbody>
</table>

Error message $\square \Rightarrow \square \times$

<table>
<thead>
<tr>
<th>a_2</th>
<th>a_1</th>
<th>a_0</th>
<th>n_2</th>
<th>n_1</th>
<th>n_0</th>
<th>l_1</th>
<th>l_0</th>
<th>d_n</th>
<th>...</th>
<th>d_0</th>
<th>c_2</th>
<th>c_1</th>
<th>c_0</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_2 - a_0</td>
<td>Unit address for slave \square</td>
<td></td>
</tr>
<tr>
<td>n_2 - n_0</td>
<td>Pfeiffer Vacuum parameter numbers</td>
<td></td>
</tr>
<tr>
<td>l_1 - l_0</td>
<td>Data length d_n - d_0</td>
<td></td>
</tr>
<tr>
<td>d_n - d_0</td>
<td>Data in data type concerned (siehe S. 24, Kap. 7.3)</td>
<td></td>
</tr>
</tbody>
</table>

- "NO_DEF" The parameter n_2 - n_0 does not exist
- "RANGE" Data d_n - d_0 are outside the permitted range
- "LOGIC" Logic access violation

Example 1

Data request

Actual rotation speed (parameter [P:309], device address slave: "123")

$\square \Rightarrow \square ?$

<table>
<thead>
<tr>
<th>a_2</th>
<th>a_1</th>
<th>a_0</th>
<th>n_2</th>
<th>n_1</th>
<th>n_0</th>
<th>l_1</th>
<th>l_0</th>
<th>d_n</th>
<th>...</th>
<th>d_0</th>
<th>c_2</th>
<th>c_1</th>
<th>c_0</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>49 50 51 48 48 51 48 48 50 61 63 49 49 50 13</td>
<td></td>
</tr>
</tbody>
</table>

Data request: 633 Hz

Actual rotation speed (parameter [P:309], device address slave: "123")

$\square \Rightarrow \square \checkmark$

<table>
<thead>
<tr>
<th>a_2</th>
<th>a_1</th>
<th>a_0</th>
<th>n_2</th>
<th>n_1</th>
<th>n_0</th>
<th>l_1</th>
<th>l_0</th>
<th>d_n</th>
<th>...</th>
<th>d_0</th>
<th>c_2</th>
<th>c_1</th>
<th>c_0</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>49 50 51 49 48 51 48 57 48 54 48 48 54 51 51 48 51 55 13</td>
<td></td>
</tr>
</tbody>
</table>
Example 2

Control command
Switch on pumping station (parameter [P:010], device address slave: "042")

```
IOP 0 4 2 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 2 0 TR
ASCII  48 52 50 49 48 48 49 48 48 54 49 49 49 49 49 48 50 48 13
```

Control command understood
Switch on pumping station (parameter [P:010], device address slave: "042")

```
IOP 0 4 2 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 2 0 CR
ASCII  48 52 50 49 48 48 49 48 48 54 49 49 49 49 49 48 50 48 13
```

7.3 Applied data types

<table>
<thead>
<tr>
<th>Data type</th>
<th>Description</th>
<th>Size I1-I0</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>False / true</td>
<td>06</td>
<td>000000 / 111111</td>
</tr>
<tr>
<td>1</td>
<td>Positive integer number</td>
<td>06</td>
<td>000000 to 999999</td>
</tr>
<tr>
<td>2</td>
<td>Positive fixed comma number</td>
<td>06</td>
<td>001571 equal to 15,71</td>
</tr>
<tr>
<td>4</td>
<td>Symbol chain</td>
<td>06</td>
<td>TC_400</td>
</tr>
<tr>
<td>7</td>
<td>Positive integer number</td>
<td>03</td>
<td>000 to 999</td>
</tr>
<tr>
<td>11</td>
<td>Symbol chain</td>
<td>16</td>
<td>BrezelBier&Wurst</td>
</tr>
</tbody>
</table>
8 Malfunctions

8.1 General

Turbopump and electronic drive unit malfunctions always result in a warning or error message. In both cases, the electronic drive unit outputs an error code. Operating messages are generally displayed via the LEDs on the electronic drive unit. If an error occurs, the turbopump and connected devices will be switched off. The selected venting mode will be triggered after the preset delay.

WARNING

Automatic start-up after error acknowledgement

The function "pumping station" of the electronic drive unit will remain active after a power failure or if errors occur that lead to shut down the pump or the system. The turbopump will automatically run-up once the error has been rectified and acknowledged.

- Switch off the function "pumping status" if necessary.
- Take suitable safety measures to prevent the high vacuum flange from meshing when the turbopump is running.

8.2 Operating mode display via LED

LEDs in the front panel of the electronic drive unit show basic operating conditions of the turbopump. A differentiated malfunction and warning display is possible only for operation with DCU or HPU.

<table>
<thead>
<tr>
<th>LED</th>
<th>Symbol</th>
<th>Steady OFF</th>
<th>Flashing (1/12 s active)</th>
<th>Blinking (1/2 s active)</th>
<th>Steady ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td></td>
<td></td>
<td>insufficient power supply</td>
<td>Pumping station "OFF"</td>
<td>Rotation speed ≤ 1Hz</td>
</tr>
<tr>
<td>Yellow</td>
<td></td>
<td></td>
<td>no warning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td></td>
<td></td>
<td>no malfunction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.3 Error codes

<table>
<thead>
<tr>
<th>Error code</th>
<th>Problem</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Err001</td>
<td>Excess rotation speed</td>
<td></td>
<td>➔ Contact Pfeiffer Vacuum Service ➔ Reset at rotation speed $f = 0$ only</td>
</tr>
<tr>
<td>Err002</td>
<td>Overvoltage</td>
<td>– Wrong mains pack used</td>
<td>➔ Check type of mains pack ➔ Check mains pack voltage</td>
</tr>
<tr>
<td>Err006</td>
<td>Run-up time error</td>
<td>– Run-up time too short</td>
<td>➔ Adjust run-up time to process ➔ Check the vacuum chamber for leaks or closed valves ➔ Adjust rotation speed switch point</td>
</tr>
<tr>
<td>Err007</td>
<td>Operating fluid deficiency</td>
<td>– Operating fluid deficiency</td>
<td>➔ Check operating fluid ➔ Reset at rotation speed $f = 0$ only</td>
</tr>
<tr>
<td>Err008</td>
<td>Connection electronic drive unit - pump faulty</td>
<td>– Connection to the pump is faulty</td>
<td>➔ Check the connection ➔ Reset at rotation speed $f = 0$ only</td>
</tr>
<tr>
<td>Err010</td>
<td>Internal device fault</td>
<td></td>
<td>➔ Contact Pfeiffer Vacuum Service ➔ Reset at rotation speed $f = 0$ only</td>
</tr>
<tr>
<td>Err021</td>
<td>Electronic drive unit does not recognizes pump</td>
<td></td>
<td>➔ Contact Pfeiffer Vacuum Service ➔ Reset at rotation speed $f = 0$ only</td>
</tr>
<tr>
<td>Err043</td>
<td>Internal configuration fault</td>
<td></td>
<td>➔ Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Err044</td>
<td>Excess temperature electronic</td>
<td>– Cooling deficient</td>
<td>➔ Optimize cooling ➔ Check the ambient conditions</td>
</tr>
<tr>
<td>Error code</td>
<td>Problem</td>
<td>Possible cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>Err045</td>
<td>Excess temperature motor</td>
<td>Cooling deficient</td>
<td>Optimize cooling, Check the ambient conditions</td>
</tr>
<tr>
<td>Err046</td>
<td>Internal initialization fault</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Err091</td>
<td>Internal device fault</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Err092</td>
<td>Unknown connection panel</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Err093</td>
<td>Temperature analysis motor faulty</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Err094</td>
<td>Temperature analysis electronic faulty</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Err098</td>
<td>Internal communication fault</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Err107</td>
<td>Collective fault power stage</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service, Reset at rotation speed f = 0 only</td>
</tr>
<tr>
<td>Err108</td>
<td>Rotation speed measurement faulty</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service, Reset at rotation speed f = 0 only</td>
</tr>
<tr>
<td>Err109</td>
<td>Firmware not confirmed</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Err110</td>
<td>Operating fluid analysis faulty</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service, Reset at rotation speed f = 0 only</td>
</tr>
<tr>
<td>Err111</td>
<td>Communication fault operating fluid pump</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service, Reset at rotation speed f = 0 only</td>
</tr>
<tr>
<td>Err112</td>
<td>Collective fault operating fluid fault</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service, Reset at rotation speed f = 0 only</td>
</tr>
<tr>
<td>Err113</td>
<td>Rotor temperature invalid</td>
<td>Measurement not calibrated</td>
<td>Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Err114</td>
<td>Temperature analysis power stage faulty</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Err117</td>
<td>Excess temperature pump bottom part</td>
<td>Cooling deficient</td>
<td>Optimize cooling, Check the ambient conditions</td>
</tr>
<tr>
<td>Err118</td>
<td>Excess temperature power stage</td>
<td>Cooling deficient</td>
<td>Optimize cooling, Check the ambient conditions</td>
</tr>
<tr>
<td>Err119</td>
<td>Excess temperature bearing</td>
<td>Cooling deficient</td>
<td>Optimize cooling, Check the ambient conditions</td>
</tr>
<tr>
<td>Err143</td>
<td>Excess temperature operating fluid pump</td>
<td>Cooling deficient</td>
<td>Optimize cooling, Check the ambient conditions, Reset at rotation speed f = 0 only</td>
</tr>
<tr>
<td>Err777</td>
<td>Nominal rotation speed not confirmed</td>
<td></td>
<td>Confirm the nominal rotation speed via [P:777], Reset at rotation speed f = 0 only</td>
</tr>
<tr>
<td>Wrn007</td>
<td>Low voltage / mains power failure</td>
<td>Mains failure</td>
<td>Check mains supply</td>
</tr>
<tr>
<td>Wrn018</td>
<td>Remote priority conflict</td>
<td></td>
<td>Switch on the pumping station via E74, Switch off [P:010]</td>
</tr>
<tr>
<td>Wrn045</td>
<td>High temperature motor</td>
<td>Cooling deficient</td>
<td>Optimize cooling, Check the ambient conditions</td>
</tr>
<tr>
<td>Wrn076</td>
<td>High temperature electronic</td>
<td>Cooling deficient</td>
<td>Optimize cooling, Check the ambient conditions</td>
</tr>
<tr>
<td>Wrn097</td>
<td>Pump information invalid</td>
<td>Pump data faulty</td>
<td>Reset for default values</td>
</tr>
<tr>
<td>Wrn098</td>
<td>Pump information incomplete</td>
<td>Connection to the pump is faulty</td>
<td>Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Wrn113</td>
<td>Rotor temperature inaccurate</td>
<td>Measurement not calibrated</td>
<td>Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Wrn115</td>
<td>Temperature analysis pump bottom part faulty</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Wrn116</td>
<td>Temperature analysis bearing faulty</td>
<td></td>
<td>Contact Pfeiffer Vacuum Service</td>
</tr>
<tr>
<td>Wrn117</td>
<td>High temperature pump bottom part</td>
<td>Cooling deficient</td>
<td>Optimize cooling, Check the ambient conditions</td>
</tr>
<tr>
<td>Wrn118</td>
<td>High temperature power stage</td>
<td>Cooling deficient</td>
<td>Optimize cooling, Check the ambient conditions</td>
</tr>
<tr>
<td>Wrn119</td>
<td>High temperature bearing</td>
<td>Cooling deficient</td>
<td>Optimize cooling, Check the ambient conditions</td>
</tr>
<tr>
<td>Wrn143</td>
<td>High temperature operating fluid pump</td>
<td>Cooling deficient</td>
<td>Optimize cooling, Check the ambient conditions</td>
</tr>
<tr>
<td>Wrn168</td>
<td>High deceleration</td>
<td>Rate of pressure rise too high; Venting rate to high</td>
<td>Check and optimize the venting rate (pump specific)</td>
</tr>
</tbody>
</table>
9 Accessories

An overview about original Pfeiffer Vacuum accessories for the designated device can be found in the operating instructions of the respective vacuum pump.
Declaration of conformity

according to the EC directive:

- Electromagnetic Compatibility 2004/108/EC
- Low Voltage 2006/95/EEC

We hereby certify, that the product specified below is in accordance with the provision of EU Electromagnetic Compatibility Directive 2004/108/EEC and EU Low Voltage Directive 2006/95/EEC.

TC 110

Guidelines, harmonised standards and national standards and specifications which have been applied:

DIN EN 61000-3-2 : 2008
DIN EN 61000-3-3 : 2006
DIN EN 61010-1 : 2002
DIN EN 61326-1 : 2006
DIN EN 62061 : 2005
Semi F47-0200

Signatures:

Pfeiffer Vacuum GmbH
Berliner Straße 43
35614 Asslar
Germany

(M.Bender) Managing Director
(Dr. M. Wiemer) Managing Director

CE/2009
Pfeiffer Vacuum stands for innovative and custom vacuum solutions worldwide. For German engineering art, competent advice and reliable services.

Ever since the invention of the turbopump, we’ve been setting standards in our industry. And this claim to leadership will continue to drive us in the future.