
Appendix

MatStat Potentiostat Control Software Manual and
Maintenance Guide

A.1 Preamble
This appendix describes the installation, usage, and internal workings of the

MatStat potentiostat control software written in Matlab. The software is designed to

control analog Princeton Applied Research (PAR) potentiostats using National

Instruments (NI) data acquisition cards, although it could be expanded to work with any

analog potentiostat and any data acquisition cards that can communicate with Matlab’s

data acquisition package. MatStat enables both analog and digital waveforms as well as

high precision and high rate data acquisition on both current and voltage channels.

MatStat is currently capable of making measurements in both potential control and

current control modes, as well as open circuit voltage measurements, although the

specific use is obviously coupled with the analog potentiostat being used. Furthermore,

because the source code for the software is available and extensible, new modules and

waveforms can be readily added. The maintenance section describes in some detail the

inner workings of the software and should enable future users to both correct any

remaining bugs and expand the capabilities of the software. Not only does MatStat

enable the acquisition of high quality electrochemical data, it is also significantly more

flexible than most of the currently available electrochemical instrumentation software.

155

A.2 Installation Instructions
A.2.1 Software Modes

Interpreted mode. Software is run from the Matlab command line. For the Caltech

Matlab license, this requires network access, which may not always be possible for

instruments on carts. MatStat typically runs a bit faster in interpreted mode, and errors or

bugs are much easier to diagnose because the error message is printed to the Matlab

command window.

Compiled mode. Software is run from the compiled binary, without starting it from

the Matlab command line. The main benefit of this mode is that it can be used when

Matlab cannot be started (e.g., when there is no network access) and even when there is

not a complete installation of Matlab on the computer. However, it tends to run

somewhat more slowly than interpreted mode. For the purposes of installation, setting

up the software to run in compiled mode on a machine with Matlab will be referred to as

Full Compiled Mode, and setting up the software on a machine without Matlab will be

referred to as Standalone Compiled Mode.

A.2.2 System Requirements

A.2.2.1 General Requirements

• Analog potentiostat. MatStat has been tested with only Princeton Applied

Research (PAR) analog potentiostats, but should in theory be compatible with

any analog potentiostat having an external input and current and voltage

monitor outputs.

156

• Data Acquisition (DAQ) Card. MatStat currently requires a National

Instruments (NI) DAQ card, although it could be expanded to support other

cards. In particular, the software has been configured and tested with NI

PCI-6221 DAQ cards, which have a particular maximum data acquisition rate.

This rate is currently hard-coded into the software, so the use of a different

model card may require modification of the software for best performance.

• Window XP, SP3. MatStat has been exclusively tested with Windows XP. It

may function on other Windows platforms, but no promise of compatibility with

other versions of Windows is made.

• Microsoft Office Excel 2007. For saving directly to Excel format, Excel 2007 is

recommended. MatStat has been tested extensively with Excel 2007, but may

also work with Excel 2003. No promise of compatibility with later versions is

made.

A.2.2.2 Stand Alone Compiled Mode

• Matlab Compiler Runtime (MCR), version 7.10

• Microsoft Visual C++ Redistribution (included in MCR)

• MatStat compiled module

• MatStat source code

A.2.2.3 Full Compiled Mode

• Full Matlab Installation, version R2009a

• MatStat compiled module

• MatStat source code

157

A.2.2.4 Interpreted Mode

• Full Matlab Installation, version 2009a

• MatStat source code

A.2.3 Software Installation

Before undertaking any of these installations, be sure that the NI DAQ card is

properly installed on the system. Follow the manufacturer’s instructions for this step.

A.2.3.1 Stand Alone Compiled Mode

• Extract the archive compiled.zip to anywhere convenient and download the

Matlab Compiler Runtime, MCRInstaller.exe.

• Double click MCRIntsaller.exe to begin installation of the Matlab Compiler

Runtime. Follow the instructions, accepting any defaults. The installer should

automatically install VCREDIST_X86 if necessary. If prompted about

installing the .NET framework, you can ignore the warning. The .NET

framework is not needed for MatStat.

• After MCR installation, the following directory should contain the MATLAB

runtime:

 C:\Program Files\MATLAB\MATLAB Compiler Runtime\v710

Change into this directory and create a new folder named work. This is the

folder from which MatStat expects to operate.

• Copy the following files and folders into work from the extracted compiled.zip

directory:

- MatStat.m

158

- MatStat.exe

- MatStat1.ico

- folder: MatStat

• Change into the MatStat directory and create a copy of the configuration file

that is appropriate for the potentiostat configuration being used (for example,

config_PAR_173_175.mat). Change the name of this copy to config.mat.

NOTE: Windows XP does not show file extensions by default. If the file shows

up as config_PAR_173_175, then the file extension is hidden, and the name

should only be changed to config.

• To create a shortcut on the Desktop with a MatStat icon, right click on the

desktop and select New➔Shortcut. Next, click “Browse...” and navigate to:

 C:\Program Files\MATLAB\MATLAB Compiler Runtime\v710\work

Select MatStat.exe. Finish the wizard and the shortcut will be present on the

desktop. To change the icon on the shortcut, right click on it and select

Properties. On the “Shortcut” tab, click on “Change Icon...” and ignore the

warning that MatStat.exe does not contain any icons. Select “Browse...” and

navigate again to:

 C:\Program Files\MATLAB\MATLAB Compiler Runtime\v710\work

Select MatStat1.ico, and click “OK.” Click “Apply” and close the MatStat

Properties window.

• MatStat can now be started by double clicking on either the shortcut or

MatStat.exe.

159

A.2.3.2 Full Compiled Mode

• Extract the archive compiled.zip to anywhere convenient.

• Make sure that the work directory exists, or create it if it does not:

 C:\Program Files\MATLAB\R2009a\work

• Copy the following files and folders into the work directory:

- MatStat.m

- MatStat.exe

- MatStat1.ico

- folder: MatStat

• Change into the MatStat directory and create a copy of the configuration file

that is appropriate for the potentiostat configuration being used (for example,

config_PAR_173_175.mat). Change the name of this copy to config.mat.

NOTE: Windows XP does not show file extensions by default. If the file shows

up as config_PAR_173_175, then the file extension is hidden, and the name

should only be changed to config.

• To create a shortcut on the Desktop with a MatStat icon, right click on the

desktop and select New➔Shortcut. Next, click “Browse...” and navigate to:

 C:\Program Files\MATLAB\R2009a\work

Select MatStat.exe. Finish the wizard and the shortcut will be present on the

desktop. To change the icon on the shortcut, right click on it and select

Properties. On the “Shortcut” tab, click on “Change Icon...” and ignore the

warning that MatStat.exe does not contain any icons. Select “Browse...” and

160

navigate again to:

 C:\Program Files\MATLAB\R2009a\work

Select MatStat1.ico, and click “OK.” Click “Apply” and close the MatStat

Properties window.

• MatStat can now be started by double clicking on either the shortcut or

MatStat.exe.

A.2.3.3 Interpreted Mode

• Make sure that Matlab 2009a is installed on the system.

• Make sure that the work directory exists, or create it if it does not:

 C:\Program Files\MATLAB\R2009a\work

• Download the latest source code of MatStat and copy the following files and

folders into the work directory:

- MatStat.m

- folder: MatStat

• Change into the MatStat directory and create a copy of the configuration file

that is appropriate for the potentiostat configuration being used (for example,

config_PAR_173_175.mat). Change the name of this copy to config.mat.

NOTE: Windows XP does not show file extensions by default. If the file shows

up as config_PAR_173_175, then the file extension is hidden, and the name

should only be changed to config.

• Start Matlab

161

• Choose File➔Set Path from the pull-down menu. Check that the following

folders are at the top of the list:

 C:\Program Files\MATLAB\R2009a\work\MatStat

 C:\Program Files\MATLAB\R2009a\work

If they are not at the top of the list, move them up so that they are. If they are

not present on the list, choose “Add Folder...” and navigate to the appropriate

folders, adding each of the two shown above. Finally, chose “Save” and close

the Set Path dialog box.

• Now MatStat can be started from the command line by typing “MatStat” and

pressing enter.

A.2.4 Potentiostat Setup

In the following section, the correct BNC cable connections for each supported

potentiostat configuration will be described. In all cases, the NI PCI-6221 DAQ is

connected to an NI BNC-2110 connector breakout block. Connections designated as AO

or AI refer to the corresponding analog output or analog input on the BNC breakout

block. Furthermore, all of the analog inputs should be set to floating source, not

grounded source.

A.2.4.1 PAR 173 Potentiostat

• AI 0 ➔ PAR 173 Electrometer Monitor

• AI 1 ➔ PAR 179 I Out or PAR 176 Output (depending on configuration)

• AO 0 ➔ PAR 173 Ext. Sig. Inputs (right input)

162

A.2.4.2 PAR 173 Potentiostat with PAR 175 Programmer

• AI 0 ➔ PAR 173 Electrometer Monitor

• AI 1 ➔ PAR 179 I Out or PAR 176 Output (depending on configuration)

• AO 0 ➔ PAR 173 Ext. Sig. Inputs (right input)

• AO 1 ➔ BOTH PAR 175 Frame Reset and PAR 175 Ext. Trig. In. (These

should be shorted together at the PAR 175 to enable this connection.)

• PAR 175 Signal Output ➔ PAR 173 Ext. Sig. Inputs (left input)

A.2.4.3 PAR 362 Potentiostat

• AI 0 ➔ PAR 362 Potential Monitor (need a BNC to banana plug converter,

make sure that the ground plug goes into the black terminal)

• AI 1 ➔ PAR 362 Current Monitor (need a BNC to banana plug converter, make

sure that the ground plug goes into the black terminal)

• AO 0 ➔ PAR 362 Ext. In

163

A.3 Using MatStat
A.3.1 Starting MatStat

For either Stand Alone Compiled or Full Compiled Mode, locate either MatStat.exe

or a shortcut to MatStat.exe and double click on it. For Interpreted Mode, start Matlab,

type “MatStat” at the command prompt (omit the quotes), and press enter.

A.3.2 Setup Environment

A.3.2.1 Overview

1. Experiment List. Holds a list of all the programmed experiments along with

pertinent data about each.

2. Toolbar and Drop-down Menu. Define the possible operations in the Setup

Environment.

164

A.3.2.2 Toolbar Buttons

1. Open Graph. Opens a previously saved MatStat file, loading the relevant

experimental parameters, and switches to the Run Environment.

2. Print - Prints the visible screen.

3. Open Setup. Opens a previously saved MatStat setup with all experiments.

4. Save Setup. Save this setup.

5. New Setup. Clear all the current experiments (you will be prompted to save).

6. New Experiment. Insert a new experiment below the one(s) currently selected.

7. Copy Experiment. Duplicates the currently selected experiment(s).

8. Delete Experiment. Deletes all of the currently selected experiments.

9. Move Up. Moves the selected experiment(s) up one in the order.

10. Move to Top. Moves the selected experiments(s) to the top of the list.

11. Move Down. Moves the selected experiment(s) down one in the order.

12. Move to Bottom. Moves the selected experiments(s) to the bottom of the list.

13. Run Selected. Runs all selected experiments in order.

14. Run From Selected to End. Runs all experiments starting from the first selected

one to the end of the list.

165

A.3.2.3 Drop-down Menu Contents

• File

- New Setup. Clear all the current experiments (you will be prompted to

save).

- Open Setup. Opens a previously saved MatStat setup with all experiments.

- Save Setup. Save this setup under the current file (you will be prompted for

a filename if this setup has not been saved before).

- Save Setup As... Opens a dialog box to choose a save location and filename.

- Open Graph. Opens a previously saved MatStat file, loading the relevant

experimental parameters, and switches to the Run Environment.

- Print. Prints the visible screen.

- Quit. Exit MatStat.

• Edit

- New Experiment. Insert a new experiment below the one(s) currently

selected.

- Duplicate Experiments. Duplicates the currently selected experiment(s).

- Delete Experiments. Deletes all of the currently selected experiments.

- Select All. Selects all experiments in the list.

- Move Up. Moves the selected experiment(s) up one in the order.

- Move to Top. Moves the selected experiments(s) to the top of the list.

- Move Down. Moves the selected experiment(s) down one in the order.

166

- Move to Bottom. Moves the selected experiments(s) to the bottom of the

list.

• Run

- Run Selected. Runs all selected experiments in order.

- Run From Selected to End. Runs all experiments starting from the first

selected one to the end of the list.

A.3.2.4 Shortcut Keys

• Ctrl+A. Select All

• Ctrl+B. Move to Bottom

• Ctrl+D. Move Down

• Ctrl+E. New Experiment

• Ctrl+F. Run From Selected to End

• Ctrl+G. Open Graph

• Ctrl+K. Duplicate Experiments

• Ctrl+N. New Setup

• Ctrl+O. Open Setup

• Ctrl+P. Print Screen

• Ctrl+Q. Quit

• Ctrl+R. Run Selected

• Ctrl+S. Save Setup

• Ctrl+T. Move to Top

• Ctrl+U. Move Up

167

• Ctrl+W. Delete Experiments

A.3.2.5 The Experiment List

When populated with experiments, the experiment list should look something like

the image below. When using the experiment list, double clicking on a given experiment

will pull up the parameters window and allow the experiment to be modified.

Furthermore, pressing delete will remove any selected experiments from the list.

1. Experiment type

2. Scan rate for sweep experiments or data collection rate for other.

3. Experiment-type specific details

4. Current scale (where applicable)

5. Save file path and name (if any)

A.3.2.6 Adding a New Experiment

After choosing to insert a new experiment in any of the ways described above, the

user will first be presented with a window for choosing which type of experiment to

insert. Note that the contents of this window will depend on the particular analog

instruments being used (e.g., the PAR 362 cannot perform triggered experiments). For

this reason, it is extremely important that the configuration file match the instruments

being used (See Section A.2.3).

168

For each experiment, a short description is given. After selecting “Choose,” the

user will be directed to the configuration window specific to that experiment. See

Section A.3.3 for details specific to configuring each type of experiment as well as

information on configuring the potentiostats to correctly run each type of experiment.

A.3.2.7 Initiating a Run

Once the experiments have been configured, they can be run by either selecting all

of the desired experiments and selecting Run Selected, or by selecting an experiment and

choosing Run From Selected to End. When running multiple experiments, it is desirable

169

to select a save file for each one before running. However, if some experiments in the

sequence do not have specified save files, MatStat will pause after each experiment with

no specified save file and wait for user input. A warning is issued before the run begins

in this case.

NOTE: Use extreme caution when setting up a list of multiple experiments to run in

sequence. Since the instruments being used are analog in nature, all of the experiments

must have compatible settings on the potentiostat’s physical controls. This means, for

example, that current controlled experiments cannot be mixed with voltage controlled

experiments, and that the current scale must be identical for all of the experiments

conducted.

A.3.3 Experiment Types

It should be noted here that one of the strengths of MatStat is its expandability, so it

is hoped that more experiments will become available as people use the software and

discover new functionality that would be beneficial. In that case, supplemental

documentation for the new experiments should be provided. Before presenting specific

details about each type of experiment, some general information about MatStat and the

experimental parameters will be presented. Also, the names of the fields in the various

parameter windows will be given in italics throughout this section.

A.3.3.1 Data Collection and Averaging

Because the DAQ card can collect data at an extremely high rate, it is always

configured to collect data near its maximal rate. Since the user-requested data rate is

usually significantly smaller than this rate, MatStat performs software averaging to

170

produce the desired number of data points. For example, if the DAQ card can collect

data at 100,000 points per second and only 10 points per second are requested, then

10,000 points from the DAQ will be averaged for every point recorded for the user. In

each of the configuration windows, the number of points being averaged is always

shown, but is set indirectly by the user-entered parameters and is not directly accessible

from the user interface. It should be noted that most commercial digitization software

does largely the same kind of averaging before reporting data to the user because DAQ

cards are capable of such high rates of data acquisition. In the event that a user attempts

to enter configuration parameters that would necessitate the DAQ to collect data faster

than its maximum rate, the number of points averaged will read as “0-1” indicating that

the DAQ cannot keep up with the requested rate. When trying to run an experiment

configured in this way, an error will be reported and the user will not be allowed to

continue with the experiment until the error is corrected.

A.3.3.2 The Current Scale Setting

For all experiment types except the open circuit voltage measurement, current data

will be collected. It is very important in this case to set the current scale of the

potentiostat at a value such that the current will not exceed the set limit during the

measurement. Furthermore, it is critical that the Current Scale setting in the experiment

description match the setting on the potentiostat. This setting is used to convert the signal

from the potentiostat to a real current, so the reported current values will be off by orders

of magnitude if the software current scale is not set to agree with the potentiostat current

scale.

171

A.3.3.3 The Save File Setting

When setting up an experiment, a save file can be specified. The data will be

automatically saved to this file when the experiment is completed, overwriting any files

with the same path and filename. When using this setting, be sure to change the filename

when running multiple experiments from the same configuration.

A.3.3.4 A Note About Final Potentials

Since this is an analog instrument, it cannot be set to return to open circuit

following a measurement. Therefore, in each experiment type below, the potential that

the DAQ returns to is listed in the description. To return to open circuit, it is necessary to

throw the switch on the potentiostat manually.

A.3.3.5 Cyclic Voltammogram

For this experiment, the waveform is generated in the software and sent to the

potentiostat through the DAQ card. Therefore, the potentiostat should be in Control E

mode and the external input from the DAQ card should be enabled. The scan will begin

at Initial Potential (V) and proceed in the direction indicated by Initial Scan Direction.

Upon reaching either the Upper Scan Limit (V) or the Lower Scan Limit (V), the scan will

reverse directions and proceed to the other scan limit. From that limit it will reverse

directions once more and proceed back to the initial potential. Note that scans can also

be set up in which the initial potential is equal to one of the limiting potentials. In this

case the scan will proceed from the initial potential to the limiting potential and back to

the initial potential. Note that the initial sweep direction must be set appropriately when

the initial potential is equal to one of the scan endpoints. The programmed scan will be

172

repeated a number of times equal to Number of Scans. The Scan Rate (mV/s) sets the

sweep speed of the waveform. The Precision (V/point) indicates the frequency with

which to collect data along the potential axis. When the experiment is finished, the

potential will remain at the initial potential.

A.3.3.6 Potentiostatic Experiment

As with the cyclic voltammogram, the potential is set from the DAQ card so the

potentiostat should be in Control E mode and the external input from the DAQ card

should be enabled. The experiment will hold at Initial Potential (V) for a time equal to

Initial Delay (s), and will subsequently step to Run Potential (V), holding at that potential

for a time equal to Run Time (s). When this time has expired, the potential will return to

the initial potential. The rate of data acquisition is set by Rate (points/s).

A.3.3.7 Open Circuit Measurement

In this case, only measurement is performed. When using a PAR 173, the operating

mode should be set to Direct Meas. Only and the potential will only be measured. For

the PAR 362, which does not have this mode, the potentiostat should be set to Control I

and the DAQ card will cause a current of 0 A to be applied, resulting in a simulated open

circuit condition. Voltage data only will be collected for a time equal to Run Time (s) and

data will be collected at a rate of Rate (points/s). The applied potential will remain at

zero from the DAQ card no matter what potentiostat is used.

A.3.3.8 Galvanodynamic Experiment

This experiment is a controlled current sweep experiment, very similar to the cyclic

voltammogram. The external input from the DAQ card should be enabled, and the

173

potentiostat should be set to Control I mode. The scan will begin by stepping

immediately to Initial Current (mA) and proceed in the direction indicated by Initial Scan

Direction. Upon reaching either the Upper Scan Limit (mA) or the Lower Scan Limit

(mA), the scan will reverse directions and proceed to the other scan limit. From that limit

it will reverse directions once more and proceed back to the initial current. Note that

scans can also be set up in which the initial current is equal to one of the limiting

currents. In this case the scan will proceed from the initial current to the limiting current

and back to the initial current. Note that the initial sweep direction must be set

appropriately when the initial current is equal to one of the scan endpoints. The

programmed scan will be repeated a number of times equal to Number of Scans. The

Scan Rate (mA/s) sets the sweep speed of the waveform. The Precision (mA/point)

indicates the frequency with which to collect data along the current axis. Note that it is

extremely important with this technique that the current scale in the software match the

scale on the potentiostat as the current applied by the potentiostat depends on the current

scale setting. Also note that galvanodynamic experiments always return the applied

current to zero after the scan, independent of the initial current. This is for safety.

A.3.3.9 Galvanostatic Experiment

This experiment applies a constant current to the cell, so the external input from the

DAQ card should be enabled, and the potentiostat should be set to Control I mode.

Unlike the potentiostatic experiment, there is no initial delay period enabled for

galvanostatic experiments. The scan will immediately jump to Applied Current (mA) and

hold at that current for a time equal to Run Time (s). The data will be collected at a rate

174

of Rate (points/s). Note that it is extremely important with this technique that the current

scale in the software match the scale on the potentiostat as the current applied by the

potentiostat depends on the current scale setting. Also note that galvanostatic

experiments always return the applied current to zero after the scan. This is for safety.

A.3.3.10 Triggered Experiment

Triggered experiments are only available with a combination PAR 173 potentiostat

and PAR 175 programmer. This allows the user to program the waveform on the

programmer, but then the programmer is activated by MatStat and the data is collected by

MatStat. For this method, the external input on the PAR 173 coming from the PAR 175

should be enabled. The potentiostat can then be operated in either Control E or Control I

mode, depending on the intentions of the user. Any desired waveform can be set on the

programmer, and the programmer should then be set to Initial, with the Ext. Trig. button

depressed. When running the triggered experiment, the program will wait for Initial

Delay (s), collecting data at whatever initial potential the programmer is set to apply. The

software will subsequently trigger the programmer and allow it to run for Run Time (s).

When the time has elapsed, MatStat will trigger the programmer to return to its initial

potential. During the scan, data is collected at of Rate (points/s).

A.3.4 Run Environment

A.3.4.1 Overview

After the user chooses to start an experiment, MatStat will switch to the Run

Environment. The experiment will immediately be started, and the data will be shown in

in the graph window. When the experiment is finished, it will be saved if a save file was

175

specified previously. Otherwise, the user will be prompted for a save file. The user may

choose to cancel saving at this point. Once the experiment has been completed, the

behavior will depend on how the experiment was started. If there are more experiments

in the series to be conducted automatically, then they will be started immediately. If the

experiment is the last in the series, or if only one experiment was started, then the Run

Environment will remain active, and the user can continue to interact with it. This

behavior is particularly important if the user has not specified a save file in advance or

cancels saving up on completion of the experiment. If there are more experiments in the

series to be run, then the data will be lost if not saved.

See the figure on the next page for the parts of the Run Environment.

176

1. Graph area, showing data collected. Zooming is enabled on the plot after data

collection has finished by dragging. Right click and select “Reset to Original

View” to zoom all the way out. Zooming from the Experiment➔Zoom... menu

is always available.

2. Parameter display area and button to edit parameters. The type of experiment is

always shown here.

3. Toolbar.

4. Interaction and scan information area.

177

A.3.4.2 Toolbar Buttons

1. Back button. Return to the manager.

2. Open graph. Opens another data set.

3. Save. Saves the currently active data set.

4. Print. Print the current screen.

5. Go. Start running the experiment.

6. Stop. Stop running the current experiment.

A.3.4.3 Interaction and Scan Information Area

1. Plot type chooser. Display the same data in different ways.

2. Go button. Starts the experiment.

3. Stop button. Stops the experiment.

4. Done button. Return to the setup environment.

5. Save file. Experiments conducted will be saved to this file.

178

6. Information. Numbers will appear here when an experiment is in progress. Not

all experiments will have the same set of information in this area.

A.3.4.4 Drop-down Menu Contents

• File

- Open Graph. Opens another data set.

- Save Data. Saves the currently active data set.

- Print Screen. Print the current screen.

- Close. Return to the setup environment.

- Quit. Leave MatStat entirely.

• Experiment

- Zoom... Opens the zoom window.

- Start Measurement. Begin running experiment.

- Stop Measurement. Stop running experiment.

- Edit Parameters. Change experiment parameters.

A.3.4.5 Shortcut Keys

• Ctrl+E. Edit Parameters

• Ctrl+G. Start Measurement

• Ctrl+H. Stop Measurement

• Ctrl+K. Return to Setup Environment

• Ctrl+O. Open Graph

• Ctrl+P. Print Screen

• Ctrl+Q. Quit MatStat

179

• Ctrl+S. Save Data

• Ctrl+Z. Zoom...

A.3.4.6 Zoom Window

The zoom window allows zooming on all three variables available in the data. In

order to set the zoom manually, the Auto box must be unchecked for the corresponding

value. When zoom parameters have been manually set, they will persist if the plot type is

changed. However, if the plot is zoomed using the mouse, the manually set parameters

will be overwritten.

A.3.4.7 Run Environment Interaction

While there is an experiment actively running, the interaction options are somewhat

limited. The user can specify manual zoom parameters with the zoom window, but

cannot zoom using the mouse. The plot type can be changed (e.g., I vs. E or E vs. T), but

the data cannot be saved. Choosing Stop will stop the experiment from running. If the

user chooses to close the Run Environment or to quit MatStat, a prompt is displayed

confirming that the experiment should be stopped in order to close or quit. Similarly,

180

upon attempting to open a different data set, the user will be asked if they wish to

terminate the current run.

When no experiment is currently running (as when the Run Environment is reached

by loading another data set or after an experiment has been completed), there are several

options available to the user. The user can examine the data by changing the plot type

and by changing the zoom either using the mouse or through the zoom window. The user

can also edit the experimental parameters. If the Run Environment was initiated from an

experiment in the Setup Environment, then any changes made to the experimental

parameters in the Run Environment will be reflected in the experiment in the Setup

environment. When there is not experiment running, the user can also start a new

experiment at any time, either with the original parameters or after modifying the

parameters. The user can also choose to save the current data set at any time when there

is no experiment running, or as many times as desired, although no modification of the

data is possible from within MatStat. Finally, the user can choose to open a previously

collected MatStat data set.

181

A.4 Maintenance and Development Guide
This section describes the inner workings of MatStat and gives some general tips

for debugging and further development. In all cases, when making a new change to the

software, a new version number should be selected and the files from the previous

version preserved so that the changes can be rolled back in the event of unexpected

consequences. As of the writing of this manual, the latest version is 2.2.1. Any

significant changes after this version should be accompanied by documentation where

possible.

A.4.1 Overview

MatStat was designed to be as modular as possible so that new types of experiments

could be easily plugged into the existing framework. In an object-oriented language, this

could be easily accomplished using inheritance. However, the initial version of Matlab

used to develop MatStat did not support inheritance or object-oriented programming

(although more recent versions now do). The result, unfortunately, has been significant

repetition of code, which is somewhat problematic from a maintenance point of view.

Specifically, each type of experiment needs three files: __GuiSetup, __Params, and

__Open, where __ should be filled in with an abbreviation for the experiment type. In

these files, many of the inner functions are expected to have some differences, but they

are largely similar. The end result is that changes to the operation of the program

typically need to be propagated through all six of the currently available experiment

types. I have usually found it beneficial to fully develop the behavior in one module

before translating to the correct behavior for other modules.

182

In addition to the three files need for each module, I have also maintained generic

modules to be used as templates for developing new types of experiments. These are

XXGuiSetup, XXParams, and XXOpen, and they should also be updated whenever a

change is made so that new experiments can always be added easily. For each

experiment, the __GuiSetup module is the main workhorse. This module loads all of the

graphical user interface (GUI) elements for the Run Environment and controls the

acquisition, saving, and plotting of data. All of the main user interactions with the Run

Environment are encapsulated in these files as callback functions. The __Params file

manages the GUI for changing parameter values, while the __Open file contains the

logic necessary to load data of the specified type. It is necessary to have these functions

in a separate file (unlike the save function, which is included in __GuiSetup as an inner

function) because they must be available to functions outside of the __GuiSetup file.

In addition to the three main files for each experiment, there are a number of other

modules needed. The most significant is the MainGuiSetup file which includes all of

the code for the GUI and behavior of the Setup Environment. I will typically refer to this

entity as the manager in this document as well as in the program comments. Apart from

this file, there is the main MatStat file which serves only to set up the figure window and

call the manager. There are also a number of smaller modules that will be discussed

below.

Matlab functions are typically found in their own file with the same name. I will

give the names of these functions in bold, e.g., MatStat or newExp. In addition, Matlab

supports inner functions defined within the body of other functions. I will give the names

183

of these functions in italics, e.g., openFile or hScanButtonCallback. Variables will

typically be underlined as in Config.

Matlab does not support explicit typing, so I have typically included some type

information in my variable names, particularly in variables that are part of structures.

Variables with a leading “h” are typically handles to either functions or GUI elements (or

regular functions whose handles will be passed as callback functions). Variables with a

leading “i” are integers, those with a leading “d” are doubles, and those with a leading “s”

are strings. Typically arrays and structures have no leading character indicating type. I

will also refer repeatedly to “global variables,” by which I mean variables defined at the

top level in a main function as opposed to variables defined in an inner function.

A.4.2 Typical Execution Path

I always find that the first step toward understanding a program is to see its typical

execution path. I will try to give a brief description of the execution of MatStat in this

section. When it is started, MatStat first creates a new figure with a toolbar and

maximizes it (using the third party function maximize). It subsequently attempts to load

a configuration file, which currently only contains information about which potentiostat

setup is being used. See Section A.4.5 for more information on how to create a valid

configuration file. MatStat then passes a handle to the figure, a handle to the toolbar,

and and a string indicating the potentiostat type to MainGuiSetup. The manager, after

setting itself up, will then return two handles: one to its main panel so that MatStat can

make it visible, and one to its kill function so that MatStat can ask it to quit when a user

tries to close the figure. When making any changes to the way that MatStat quits, errors

184

may cause the program never to exit. In this case, uncomment the first line in

MatStat:hCloseRequestCallback and the program can exit.

Once MainGuiSetup has completed its setup process and MatStat has registered

the required handles, control of the program has been successfully passed of to

MainGuiSetup. With control of the execution, MainGuiSetup allows users to add,

change, and delete experiments as well as to save and load experimental setups. These

functions will be described in more detail in Section A.4.4.1. The next major change in

execution occurs when an experiment is run. At this point, the manager needs to hand off

control to one of the __GuiSetup modules. In order to do this, it passes pertinent data to

runDispatch which then calls the correct __GuiSetup module. That module then

performs its various setup operations and passes back a handle to its main display panel

as well as handles to its kill and run functions. With these handles, the manager can

make the Run Environment visible and actually start the run automatically. When the

user has finished with the Run Environment, the __GuiSetup will signal MainGuiSetup,

which will then invoke the kill function handle to regain control.

Finally, MatStat can be closed under a variety of circumstances. When the user

clicks the close button on the figure (the “X” in the corner), MatStat receives the signal

and uses its handle to the MainGuiSetup:hKill function. In MainGuiSetup:hKill, the

manager can check to see if the run window is currently active, and if so it can use the

handle it received to __GuiSetup:hKillThis during setup of the Run Environment to tell

the Run environment to close itself. Once the Run Environment has been closed, or if

hKill is invoked when MainGuiSetup has control, the function will simply clean up and

185

can then exit by deleting the main figure (the handle of which was passed in from

MatStat during the setup process).

Control can also be passed from MainGuiSetup to one of the __GuiSetup modules

by opening previously saved data. In this case, the same procedure as above is invoked,

but the experiment is not caused to run once it has been opened. Furthermore, it is

possible to open data from the Run Environment. In this case, __GuiSetup uses the

handle it received during setup to MainGuiSetup:openFile, allowing it to destroy itself if

another file has been successfully opened. MainGuiSetup can then make the new data

visible and thus remain in proper communication with the Run Environment at all times.

A.4.3 Important Communication Structures

Descriptions of the most important data structures used for communication among

the various modules follow.

A.4.3.1 Config

The Config structure is used to pass both configurational information and key

function handles to the __GuiSetup modules during setup. The following fields are

present:

• hMainFigure. A handle to the main figure. Used to set the parent of the panel

created in the Run Environment.

• hToolbar. A handle to the toolbar. Used to add Run Environment toolbar

buttons.

• hSwitchBack. A handle to MainGuiSetup:switchBack.

• hFileOpen. A handle to MainGuiSetup:openFile.

186

• sPstat. The potentiostat configuration string.

• hParamUpdate. A handle to MainGuiSetup:updateExp.

• paramPos. An integer specifying the position of the current experiment in the

list from MainGuiSetup. A value of -1 is used to indicate an experiment not on

the list (i.e., one that was opened from a previous data set).

• hSetSaveDir. A handle to MainGuiSetup:setSaveDir.

• hGetSaveDir. A handle to MainGuiSetup:getSaveDir.

• hSetSaveType. A handle to MainGuiSetup:setSaveType.

• hGetSaveType. A handle to MainGuiSetup:getSaveType.

A.4.3.2 saveInfo

This structure just contains the information needed to keep track of the last save

path and type. This is passed to smaller modules such as the __Params modules that

need to save and load files, but not run experiments. The fields are:

• hSetSaveDir. A handle to MainGuiSetup:setSaveDir.

• hGetSaveDir. A handle to MainGuiSetup:getSaveDir.

• hSetSaveType. A handle to MainGuiSetup:setSaveType.

• hGetSaveType. A handle to MainGuiSetup:getSaveType.

A.4.3.3 Scan (or params)

The fields in this structure vary by the type of experiment being used. The fields

for each experiment type are given in the file structs.txt in the MatStat source folder. I

will only show the fields from the structure used with IVGuiSetup here, but the fields

tend to be similar with the other experiment types. (However, it should be noted that, for

187

the Constant I experiments, the parameters are actually stored internally as the potentials

that will need to be applied from the DAQ card, not as the currents specified by the user.)

• Type - a string that should be ‘IV Scan’ for this structure. In general, the strings

for the currently available set of experiments are:

- IV Scan. Cyclic Voltammogram.

- Pot Scan. Potentiostatic Scan.

- Trig Scan. Triggered Scan.

- Voc Scan. Open Circuit Measurement.

- GalDyn Scan. Galvanodynamic Experiment.

- GalStat Scan. Galvanostatic Experiment.

• dUpperLimit. The upper scan limit in V.

• dLowerLimit. The lower scan limit in V.

• dInitial. The initial potential in V.

• iScans. The number of scans.

• ScanRate. The scan rate in mV/s.

• Step. The precision of the scan in V/point.

• sDirection. A direction string that should be either “+” or “-.”

• dCurrentScale. The current scale setting stored as an integer. To accomplish

this, the scale is stored as (1 A)/scale. Thus, at a current scale of 1 A,

dCurrentScale = 1, and at a current scale of 1 µA, dCurrentScale = 106.

• SaveFile. The full path to use when saving this experiment automatically. The

empty string is used when no value has been selected.

188

• SaveType - The extension of the file type to use (.txt, .mat, or .xls) when saving

the experiment automatically. The empty string is used when no value has been

selected.

A.4.4 Major Module Descriptions

A.4.4.1 MainGuiSetup

The setup process of MainGuiSetup starts with the definition of a number of useful

global variables, as well as two structures that are used to communicate with other

modules: Config and saveInfo. All of the GUI components that reside directly in the

main panel are defined at the top level since they can be made invisible with the main

panel when switching to the Run Environment. All of the toolbar and menu items of the

manager are declared but not defined at the top level so that they can be readily removed

and reinstated as the program switches between the Setup Environment and the Run

Environment. The function menuSetup is then responsible for configuring the menus and

the toolbars. Finally, MainGuiSetup attempts to open the default set of parameters,

which simply stores the last used set of parameters so that the program does not start

empty.

In addition to the communication structures described above, there are several

important global variables in MainGuiSetup. The handle hKillOther stores the kill

function for the currently active Run Environment. The experiments and last_saved

variables are both horizontal cell arrays, with each cell consisting of a Scan structure.

This is how the currently configured experiments are stored, with experiments being the

current list and last_saved being the most recently saved list, which is used to determine

189

whether the list needs to be saved. In addition saveDir and saveType hold the most

recently used directory for saving or opening as well as the last file type so that these can

be used when saving or loading new files.

Once the setup process is complete, MainGuiSetup is in interactive mode. The

process of switching between MainGuiSetup and the various __GuiSetup modules is

described in Section A.4.2. There is a significant amount of additional communication

between these modules, however. In particular, the following functions are passed as

handles to all of the __GuiSetup modules: switchBack, openFile, updateExp, setSaveDir,

getSaveDir, setSaveType, and getSaveType. The function switchBack allows the Run

Environment to signal that it has finished. In MainGuiSetup this function first tells the

Run Environement to quit, checking for success by the return value, and then it makes

itself visible again. The function openFile allows either MainGuiSetup or one of the

__GuiSetup functions to open another data file, with the __GuiSetup closing itself upon

successfully opening another data set. The function updateExp allows the Run

Environment to communicate changes to experiments that were initiated in the Setup

Environment, so that the changes are registered there as well. Finally, the function

setSaveDir, getSaveDir, setSaveType, and getSaveType are present so that every module

that calls up a browse window to save or load can both check the last path and file type

used (in order to open the browse window in a similar state to the last time it was closed)

and report back the new path and file type chosen.

Most of the other behavior of MainGuiSetup is fairly straightforward. In

particular, the offer to save the setup is always made whenever the program will be closed

190

or the current setup will be wiped. Whether or not to offer saving is determined by

comparing the current setup with the last saved setup. As with the other modules that

will be described, memory management of global variables and GUI elements is

accomplished by clearing those variables during the process of exiting the

MainGuiSetup module.

A.4.4.2 The __GuiSetup Family of Modules

These modules actually run all the experiments. Unfortunately, they share a

significant amount of code between them, but they have small differences to account for

the different experiments being performed. After being called from MainGuiSetup,

__GuiSetup first initializes several global variables and then configures most of the GUI

elements. The parameter display is created by the function updateDisplay so that it can

be remade when the parameters are changed. Next, __GuiSetup calls aoSetup which

attempts to configure the analog output. If it fails due to incorrect parameters,

__GuiSetup will set all of its return values to -1 to flag that an error has occurred and

MainGuiSetup will behave accordingly. Note that aoSetup is called every time the

parameters are changed so that the software is always using the most up-to-date

information when initiating a scan. Finally, __GuiSetup attempts to load any data that

was passed in (if it was called to open previous data). A value of 0 for outData indicates

that no data was given (since otherwise outData should be an array, not a scalar).

Descriptions of the global variables are provided in the code comments, so I will

only describe a few here. Of particular importance are DAQdata, data, and Time. The

data variable holds column data for the voltage and current at each point (two columns,

191

except for VocGuiSetup which only measures potential and therefore has data of only

one column), while Time holds column data for the time at each point. Both of these

variables are preallocated for the entire length of the run to avoid memory errors in the

middle of a run. The values for both of these variables are determined by averaging the

data pulled directly from the DAQ card, which is temporarily stored in DAQdata. In

addition, the variable Running is used as a flag that a scan is running and certain user

interface features should be disabled.

Most of the remaining behavior of __GuiSetup is self-explanatory apart from

initiating, running, and stopping a scan. When the go button is pushed, any old data is

first cleared from the analog output, and then the analog input and output devices are

loaded and started. The function hScanButtonCallback then enters into its main loop,

which gets new data from the DAQ card, averages it, then adds it to the current data set

and replots the data. This loop has a built in 0.25 s pause in order to keep from

overtaxing the system with updates. The data averaging is accomplished in the following

way. During aoSetup the total number of points for the entire run is calculated and stored

in TotalPoints, and the total time for the run is calculated and stored in InputTime. From

this data, the time end points for each interval can be calculated and they are stored in the

global variable tEndPoints. During averaging, data from DAQdata, which includes time

information, is averaged according to these precalculated time intervals and stored in

data.

A scan can be terminated either by user action or by reaching the end of the desired

run. In order to obtain the same behavior in both cases, the function hStopAiPushed is

192

registered as the stop function on the analog input variable, and is therefore called when

analog input has ceased either by user action or by reaching the end of the run. The

function hStopAiPushed clears out the DAQ and averages the rest of the data before

plotting the final data and calling the mySave function. The Running variable is not reset

until all of these things have been accomplished so that a new scan cannot be initiated.

Finally, the analog input is cleared by calling reset_ai to remove any remaining data and

free up memory.

A.4.4.3 The __Params Family of Modules

This family of functions acts as the GUI for changing parameter values. They take

as arguments a previous set of parameters (to populate the window with), a saveInfo

structure for changing the global save and load behavior, and information about how to

return the new parameters. This information is given as pos,which specifies the position

in the experiment list (or -1 for an experiment not from a list), and returnParams, which is

a function handle to send back the changed parameters. It is necessary to return the

parameters in this way because the actual __Params function returns immediately after

configuring the GUI, and the changed parameters need to be returned later, when the user

is finished with the dialog box. Apart from this behavior, the workings of the __Params

family of functions is fairly straightforward.

A.4.4.4 The __Open Family of Modules

This family of functions performs the correct procedures for opening data from a

given experiment type. The __Open functions take in all the parameters necessary to call

__GuiSetup, and they return all the parameters required by MainGuiSetup when

193

loading the Run Environment, as well as a parameter opened which is true if the file was

read successfully.

A.4.4.5 IVCurve

This function generates the waveform for an IV curve given the pertinent input

values. This is used by both IVGuiSetup and GalDynGuiSetup when configuring their

analog output. The data is generated for a given step size that is tied directly to the

analog output rate from the caller.

A.4.4.6 myDataPlot

This is the function used to do all of the data plotting. Its complexity has been

increased dramatically by the necessity of dealing with five different types of plots as

well as numerous possible autoscaling configurations. The function needs the data to plot

as well as a handle to the axes to plot it on and the current setting of the window variable.

In addition, it needs to know what type of plot is requested and also whether the

experiment is running. This is important because mouse zooming is disabled for running

experiments due to the constantly changing nature of the data. There is also a hack built

into myDataPlot to account for the strange zooming behavior of Matlab.

A.4.4.7 updateParams

This function is used to dispatch a parameter update request to the appropriate

__Params function. It also contains all of the default values used to initially populate the

parameter setting dialog boxes for a new experiment. The arguments passed to this

function are the same as those passed to the __Params functions since it must call those

functions.

194

A.4.4.8 setWindow

This function provides a GUI for setting the window variable. The window

variable consists of two rows of data. In the first row are the current values for min time

and max time (both in s), min potential and max potential (both in V), and min current

and max current (both in A). In the second row are booleans corresponding to whether

each corresponding value is currently set to manual scaling or not (i.e., true for manual,

false for auto). Thus, when the checkbox is checked on the GUI, the corresponding value

is false in the window variable. As with other GUI functions setWindow also takes a

function handle that allows it to return the updated window variable to the caller since

setWindow returns immediately after setting up the GUI.

A.4.4.9 newExp

This function is an intermediary GUI that allows the user to choose the type of new

experiment. It takes as parameters all of the values that are needed by __Params and

therefore updateParams, since it must call updateParams after a selection has been

made.

A.4.4.10 exp2str

This function takes the experiments cell array from MainGuiSetup and produces a

correctly formatted string. It needs the entire array because it changes the spacing so that

the columns line up for all of the experiments to be displayed. It is called every time

there is a change to the experiment list in MainGuiSetup.

195

A.4.4.11 runDispatch

This is a simple function that starts the correct __GuiSetup based on the type of the

Scan structure passed in.

A.4.4.12 typeToOpen

This is a simple function to translate between a given type string and an integer for

the saving a loading of text files. This is necessary because for some reason Matlab will

not allow text to be read from text files, only numbers. Thus, a number is written to the

file indicating what type of file it is, so that when the file is opened later, the number can

be read and translated back to a type.

A.4.4.13 putFileString

This function takes the last used file type and generates the list of choices for saving

so that the last used file type is always the first choice.

A.4.5 Regenerating Configuration Files and Potentiostat Support

The current configuration file only contains a single field that specifies the type of

potentiostat setup being used. If desired, future development could significantly expand

the information in this file, perhaps to include information about the type of DAQ card

being used and even local user preferences. Use the following sequence of commands at

the Matlab command prompt to generate a configuration file containing the string

PAR173/175 named config_PAR_173_175.mat.

>> config.sPstat = ‘PAR173/175’

>> save(‘config_PAR_173_175’,‘config’)

196

At the time of this writing, the recognized potentiostat strings are PAR173,

PAR173/175, and PAR362, with obvious meanings. When trying to support a new type

of potentiostat, it is important to be aware of the following places in the code that make

use of the potentiostat configuration. The newExp module requires knowledge of the

potentiostat configuration so that triggered experiments can be made available only when

a programmer is present. In MainGuiSetup, knowledge of the potentiostat configuration

is required when loading a set of experiments in order to make sure that no unsupported

experiments are in the list. Furthermore, in GalStatGuiSetup and GalDynGuiSetup, the

potentiostat type is important because the potential polarity must be inverted on the PAR

173, but not on the PAR 362. Finally, in TrigGuiSetup, the configuration is checked on

initiating a scan to make sure that the system can support it. When adding a new type of

potentiostat, these are good starting points to make sure that MatStat behaves properly

with the new hardware. There may be other issues, particularly polarity issues, however,

that will need to be addressed as well.

A.4.6 Adding New Modules

When adding new modules to MatStat, the first step should be to modify the generic

XX files: XXGuiSetup, XXParams, and XXOpen to suit the specific desired behavior.

when making the changes to these functions, it is probably best to consult some of the

similar modules to see how things are done in other, working, experiments. In addition to

making these modified files, small modifications will be necessary to nearly all of the

other small functions, most of which have some form of switch statement on the type of

experiment being performed. Although these processes may be somewhat tedious, it is

197

expected that adding a completely new module should not take more than a few hours for

someone who is already somewhat familiar with the inner workings of MatStat. This is

one of the key advantages of the software—that it can be readily expanded to suit

changing needs and imaginative ideas.

A.5 Final Notes
MatStat is certainly not the most elegant piece of software ever written, but it does

work, and it does provide high quality data. More likely than not, with the object-

oriented features of Matlab R2008a (most of the original development was done on

R2007a), I could significantly improve the structure of the program, but that kind of

sweeping overhaul would likely introduce more problems than it would fix. In all

likelihood, few changes will be made to the software after I stop maintaining it, and so I

hope that the current version is robust and stable enough to provide many years of happy

data collection for many researchers. Enjoy!

198

