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Surface Analysis 
The Study of the Outer-Most Layers of Materials (<100 ). 

  Electron 
Spectroscopies 

    XPS: X-ray 
Photoelectron    
Spectroscopy 

 

    AES: Auger Electron 
Spectroscopy 

 

    EELS: Electron Energy 
Loss Spectroscopy 

  Ion Spectroscopies 
    SIMS: Secondary Ion 

Mass Spectrometry 
 

    SNMS: Sputtered 
Neutral Mass 
Spectrometry 

 

    ISS: Ion Scattering 
Spectroscopy 



Introduction to  
X-ray Photoelectron 
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Introduction to X-ray Photoelectron 
Spectroscopy (XPS) 

  What is XPS?- General Theory 
  How can we identify elements 

and compounds? 
  Instrumentation for XPS 
  Examples of materials analysis with 

XPS 



What is XPS? 

 X-ray Photoelectron  Spectroscopy 
(XPS), also known as Electron Spectroscopy 
for Chemical Analysis (ESCA) is a widely 
used technique to investigate the chemical 
composition of  surfaces. 



What is XPS? 

 X-ray Photoelectron spectroscopy, 
based on the photoelectric effect,1,2 was 
developed in the mid-1960’s by Kai 
Siegbahn and his research group at the 
University of Uppsala, Sweden.3 

1. H. Hertz, Ann. Physik 31,983 (1887). 
2. A. Einstein, Ann. Physik  17,132 (1905). 1921 Nobel Prize in Physics. 
3. K. Siegbahn, Et. Al.,Nova Acta Regiae Soc.Sci., Ser. IV, Vol. 20 (1967). 
1981 Nobel Prize in Physics. 



X-ray Photoelectron Spectroscopy 
Small Area Detection 

X-ray Beam 

X-ray penetration 
depth ~1mm. 
Electrons can be 
excited in this 
entire volume. 

X-ray excitation area ~1x1 cm2.  Electrons 
are emitted from this entire area 

Electrons are extracted 
only from a narrow solid 
angle. 

1 mm2 

10 nm 



  XPS spectral lines are 
identified by the shell from 
which the electron was 
ejected (1s, 2s, 2p, etc.). 

  The ejected photoelectron has 
kinetic energy: 

             KE=hv-BE- 
  Following this process, the 

atom will release energy by 
the emission of an Auger 
Electron. 
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  L electron falls to fill core level 
vacancy (step 1). 

  KLL Auger electron emitted to 
conserve energy released in 
step 1. 

  The kinetic energy of the 
emitted Auger electron is:  

           KE=E(K)-E(L2)-E(L3). 
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XPS Energy Scale 

 The XPS instrument measures the 
kinetic energy of all collected  
electrons.  The electron signal includes 
contributions from both photoelectron 
and Auger electron lines. 
 



 
  KE = hv - BE - spec 

 
 Where:  BE= Electron Binding Energy 
  KE= Electron Kinetic Energy 
  spec= Spectrometer Work Function 

 
Photoelectron line energies: Dependent on photon energy. 
Auger electron line energies: Not Dependent on photon energy. 
 

 If XPS spectra were presented on a kinetic energy scale, 
one would need to know the X-ray source energy used to collect  
the data in order to compare the chemical states in the sample 
with data collected using another source. 

XPS Energy Scale- Kinetic energy 



XPS Energy Scale- Binding energy 
 

  BE = hv - KE - spec 
 

 Where:  BE= Electron Binding Energy 
  KE= Electron Kinetic Energy 
  spec= Spectrometer Work Function 

 
 Photoelectron line energies: Not Dependent on photon energy. 
 Auger electron line energies: Dependent on photon energy. 

 
 The binding energy scale was derived to make uniform 

comparisons of chemical states straight forward. 



 Free electrons (those giving rise to conductivity) find 
an equal potential which is constant throughout the material. 

Fermi-Dirac Statistics: 

f(E) =                 1 
           exp[(E-Ef)/kT] + 1 

1.0 
f(E) 

0 

0.5 

Ef 1.  At T=0 K:  f(E)=1 for E<Ef 
  f(E)=0 for E>Ef 

 
2.  At kT<<Ef (at room temperature kT=0.025 eV) 

  f(E)=0.5 for E=Ef 

T=0 K 
kT<<Ef 

Fermi Level Referencing 



Fermi Level Referencing 
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 Because the Fermi levels of the sample and spectrometer are 
aligned, we only need to know the spectrometer work function, 
spec, to calculate BE(1s).   
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hv 

      A relative build-up of  electrons at the spectrometer 
raises the Fermi level of the spectrometer relative to the 
sample.  A potential Ech will develop. 
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Binding Energy Referencing 
 BE = hv - KE - spec- Ech 

 
 Where:  BE= Electron Binding Energy 
  KE= Electron Kinetic Energy 
  spec= Spectrometer Work Function 
  Ech= Surface Charge Energy 

 
     Ech can be determined by electrically calibrating the 
instrument to a spectral feature. 
 

  C1s at 285.0 eV 
  Au4f7/2 at 84.0 eV 



Where do Binding Energy Shifts 
Come From? 
-or How Can We Identify Elements and Compounds? 

Electron-electron  
repulsion 

Electron-nucleus  
attraction 

Electron 

Nucleus 

Binding 
Energy 

Pure Element 

Electron-
Nucleus 
Separation 

Fermi Level 

Look for changes here 
by observing electron 
binding energies 



Elemental Shifts 

Binding Energy (eV)

Element 2p3/2 3p Δ

Fe 707 53 654

Co 778 60 718

Ni 853 67 786

Cu 933 75 858

Zn 1022 89 933

Electron-nucleus attraction helps us identify the
elements



Elemental Shifts 



Binding Energy Determination 

The photoelectron’s binding energy will be 
based on the element’s final-state configuration. 
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The Sudden Approximation 

Assumes the remaining orbitals (often called the passive orbitals) are 
the same in the final state as they were in the initial state (also called 
the frozen-orbital approximation).  Under this assumption, the XPS 
experiment measures the negative Hartree-Fock orbital energy: 
 

Koopman’s Binding Energy 
 

EB,K  -B,K 
 

 
Actual binding energy will represent the readjustment of the N-1 
charges to minimize energy (relaxation): 
 

EB = Ef N-1 - Ei N 



Binding Energy Shifts  
(Chemical Shifts) 

Point Charge Model: 
 

Ei = Ei
0        +       kqi      +         qi/rij 

EB in atom i in given 
refernce state  

Weighted charge of i Potential at i due to 
surrounding charges  



Carbon-Oxygen Bond 
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(Oxygen Electro-
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Chemical Shifts-  
Electronegativity Effects 



Chemical Shifts- 
Electronegativity Effects 

Functional
Group

Binding Energy
(eV)

hydrocarbon C-H, C  -C  285.0

amine C-N  286.0

alcohol, ether C-O-H, C  -O-C  286.5

Cl bound to C C-Cl  286.5

F bound to C C-F  287.8

carbonyl C=O  288.0



Electronic Effects 
Spin-Orbit Coupling 
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Electronic Effects 
Spin-Orbit Coupling 
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Electronic Effects 
Spin-Orbit Coupling 
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Electronic Effects 
Spin-OrbitCoupling 
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Electronic Effects- Spin-Orbit Coupling 

Ti Metal Ti Oxide 



Final State Effects- 
Shake-up/ Shake-off 

  Monopole transition: Only the principle 
quantum number changes.  Spin and 
angular momentum cannot change. 

  Shake-up: Relaxation energy used to 
excite electrons in valence levels to 
bound states (monopole excitation). 

  Shake-off: Relaxation energy used to 
excite electrons in valence levels to 
unbound states (monopole ionization). 

 Results from energy made available in the relaxation of the final 
state configuration (due to a loss of the screening effect of the 
core level electron which underwent photoemission).   

L(2p) -> Cu(3d) 



Final State Effects- 
Shake-up/ Shake-off 

Ni Metal Ni Oxide 



Final State Effects- Multiplet Splitting 

Following photoelectron emission, the 
remaining unpaired electron may 
couple with other unpaired electrons in 
the atom, resulting in an ion with 
several possible final state 
configurations with as many different 
energies.  This produces a line which 
is split asymmetrically into several 
components. 



Electron Scattering Effects 
     Energy Loss Peaks 

     Photoelectrons travelling through the 
solid can interact with other electrons in 
the material.  These interactions can result 
in the photoelectron exciting an electronic 
transition, thus losing some of its energy 
(inelastic scattering). 

eph  + esolid  e*ph  + e**solid 



Electron Scattering Effects 
Plasmon Loss Peak 
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Electron Scattering Effects 
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Quantitative Analysis by XPS 

For a Homogeneous sample: 
I = NsDJLlAT 

 
where: N = atoms/cm3 

s = photoelectric cross-section, cm2 
D = detector efficiency 

J = X-ray flux, photon/cm2-sec 
L = orbital symmetry factor 

l = inelastic electron mean-free path, cm 
A = analysis area, cm2 

T = analyzer transmission efficiency 
 



Quantitative Analysis by XPS 
N = I/sDJLlAT 

 
Let denominator = elemental sensitivity factor, S 

 
N = I / S 

 
Can describe Relative Concentration of observed elements as a 

number fraction by: 
 

Cx = Nx / SNi 
 

Cx = Ix/Sx / S Ii/Si 
 

The values of S are based on empirical data. 



Relative Sensitivities of the Elements 
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XPS of Copper-Nickel alloy 
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Comparison of Sensitivities 
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Instrumentation for X-ray 
Photoelectron 
Spectroscopy 



Introduction to X-ray Photoelectron 
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Instrumentation for XPS 

 Surface analysis by XPS requires 
irradiating a solid in an Ultra-high Vacuum 
(UHV) chamber with monoenergetic soft X-
rays and analyzing the energies of the 
emitted electrons. 



 
 

  Remove  adsorbed gases from 
the sample. 

  Eliminate adsorption of 
contaminants on the sample.  

  Prevent arcing and high 
voltage breakdown. 

  Increase the mean free path for 
electrons, ions and photons. 
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X-ray Photoelectron Spectrometer 



X-ray Photoelectron Spectrometer 
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XPS at the ‘Magic Angle’ 
Orbital Angular Symmetry Factor 

 
LA (g) = 1 + bA (3sin2g/2 - 1)/2 

 
where: g = source-detector angle 

b = constant for a given sub-shell and X-ray photon 
 

At 54.7º the ‘magic angle’ 
 

LA = 1 



Electron Detection 
      Single Channel Detector 

Electron distribution on analyzer detection plane 

Counts in spectral memory 

Step 1 2  3 

Step 1 2 3 

E1  E2  E3  E1  E2  E3  E1  E2  E3  



Electron Detection 
     Multi-channel Position Sensitive Detector (PSD) 

Electron distribution on analyzer detection plane 

Counts in spectral memory 
E1  E2  E3  E1  E2  E3  E1  E2  E3  E1  E2  E3  E1  E2  E3  

Step 1 2  3  4  5  

Step 1 2  3  4  5  



X-ray Generation 
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Relative Probabilities of Relaxation of a K 
Shell Core Hole 
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  Note: The light 
elements have a 
low cross section 
for X-ray emission.  
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Schematic of Dual Anode X-ray Source 
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Schematic of X-ray Monochromator 
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Applications of  
X-ray Photoelectron 
Spectroscopy (XPS) 



XPS Analysis of Pigment from Mummy 
Artwork 
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XPS analysis showed 
that the pigment used 
on the mummy 
wrapping was Pb3O4 
rather than Fe2O3 

Egyptian Mummy  
2nd Century AD 
World Heritage Museum 
University of Illinois 

 



Analysis of Carbon Fiber- Polymer 
Composite Material by XPS 

Woven carbon 
fiber composite 

XPS analysis identifies the functional 
groups present on composite surface.  
Chemical nature of fiber-polymer 
interface will influence its properties. 
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Analysis of Materials for Solar Energy Collection 
by XPS Depth Profiling-  
The  amorphous-SiC/SnO2 Interface 

The profile indicates a reduction of the SnO2 
occurred at the interface during deposition.  
Such a reduction would effect the collector’s 
efficiency. 

Photo-voltaic Collector 

Conductive Oxide- SnO2 
p-type a-SiC 

a-Si 

Solar Energy 

SnO2 
Sn 

Depth 
500 496 492 488 484 480 

Binding Energy, eV 
Data courtesy A. Nurrudin and J. Abelson, University of Illinois 



Angle-resolved XPS 
q  =15° q  = 90° 

More Surface 
Sensitive Less Surface 

Sensitive 

Information depth = dsinq	

d = Escape depth ~ 3 l	

q = Emission angle relative to surface 
l =  Inelastic Mean Free Path 

q 

q	




Angle-resolved XPS Analysis of Self-
Assembling Monolayers 

Angle Resolved XPS Can 
Determine 
 Over-layer Thickness 
 Over-layer Coverage 

Data courtesy L. Ge, R. Haasch and A. Gewirth, University of Illinois 
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