
Lecture 10

Transition probabilities and photoelectric 
cross sections



TRANSITION PROBABILITIES AND PHOTOELECTRIC CROSS SECTIONS

Cross section = V = Transition probability per  unit time of exciting a 
single atom or molecule or solid specimen from <i(N) to <f(N) with
unit incident photon flux of 1 cm-2 sec-1.  If the direction of  PE is
defined with respect to photon polarization and propagation. It is 
called dV/d:

V = ³ dV/d: d:

The perturbation of electromagnetic radiation on N electron system 
(weak field limit)

ƨ = -e/(2mc) (P. A + A . P)
P = -iƫµ, A = A(r, t), vector potential of the field. 



If  the electromagnetic wave is traveling in uniform medium, it is 
possible to choose A such that µ. A = 0 thus P. A = 0, in XPS we 
consider only A. P. 

There are exceptions, UPS  “Surface photo effect”

Electromagnetic wave is assumed to be a plane wave.
A(r,t) = e A0 exp [i(khȞ.r - 2SQt)]

e is a unit vector parallel to E, electric field 
A0 – amplitude factor
khQ is wave vector of propagation | khQ| = 2S/O

Transition probability from <i(N) to<f(N) can be given by matrix 
element,
|Mif|2 = |¢<f(N) | 6i=1

N A(ri).pi|<i(N)² |2
= ƫ2A0

2 |¢<f(N) | 6 i=1
N exp(i khQ.ri) e. µi|<i(N)²|2



Integration is over the space and spin coordinates of all the electrons.
Intensity of photon flux is proportional to A0

2. Find state <f(N) 
corresponds to electron emission through wave vector kf

(momentum pf= ƫkf) oriented within solid angle d:.

There are many  ways by which this expression can be evaluated. The
initial state is represented as an antisymmetrised product of active k
orbital from which photoemission occurs and the N-1 electron 
remainder <R(N-1), representing passive electrons.

<i(N) = Å(Ik(1) Fk(1), <R(N-1))

In the weak coupling case,
<f(N) = Å(If(1) Ff(1), <f(N-1))

Here the k subscript of the ionic function is suppressed primary kof
excitation event is rapid. This is the “Sudden approximation”. 



The operation of one electron transition operator on the 
N electron function is assumed to be like,
¢ȥf(1)| Ȉi=1

N ti |ȥi(1)² = ¢If(1)| t |Ik(1)²¢ȥf(n-1)|ȥR(n-1)²

Thus the transition probabilities are proportional to,
¢If(1)|t|Ik(1)²|2 |¢<f(N-1)| <R(N-1)²|2

If the overlap integral has to be non zero, both <f and <R must belong
to the same irreducible representation. This is the origin of the 
‘monopole’ electron rule. (<R is not a valid ionic state wave function. 
It is only a non-unique representation of N-1 passive electrons.

Let us see whether sudden approximation is valid.
If the excitation from k sub shell yields a number of final state energies (Ef(N-1, 
k) k = 1, 2, … the validity of sudden approximation is that [Ef(N-1), k) – Ef(N-1) 
k’)]  t’/ƫ<<1

t’ is the time required for k o f photoelectron to leave the system,
K and k’ are a set of final states of significant intensity.



|< If |r| IAO>|2 D dVAO
(AO) / d:

or < If|r| IAO> D r (dVAO
(AO) / d:)1/2

This will give,
dVk

(MO) / d: D 6AO |CAOk|2 (dVAO
(AO)/d:)

|CAOk|2 is the not population of atomic orbital AO in the molecular orbital k. 
The model discussed has been applied with high accuracy to molecular 
systems.



Solids and Valence bands

Three step model involving 
a) Excitation from orbital Ik to If

b) Electron transport via If to surface during which elastic or inelastic
process may occur. 
c) Passage of e- through the surface, reflection and refraction may 
occur as a result of surface potential. A zeroth step involving the 
penetration of radiation to the depth were excitation occurs may be 
included.

For non overlapping, localised orbitals atomic cross sections may be
used for slightly overlapping quasi-molecular orbitals the previous
method may be used. For highly overlapping valence levels the
following procedure is used



For a crystalline solid, the orbitals Ik and If will be Bloch functions

Ik(r) = Ik(r) = nk(r) exp (ik.r) and 
If(r) = Ik

f(r) = nk
f(r) exp(ikf.r)

The electron makes a transition from Ik(r) to If(r). The kinetic energy 
inside the surface E’

kin,i  gets reduced to Ekin’ outside the surface by a 
factor V0.
V0 corresponds to the barrier height.

dV/d: = C(1/hQ) |<<f(N)| 6I=1
N exp ikhQ



For Ekin = 1000 eV, Q/c| 0.06 or Q = 2x109 cm/s

For an  atomic diameter of 2A the escape time,
t’ =  2 x 10-8/2 x 109 = (10-17)s.
t/h = 1/65 eV-1. For a final state separation of 10eV, the condition is 
Violated

The initial and final States can also be represented in terms of single
determinant Hartree Fock wave function.

<i(N) = Â(I1F1, I2F2, … , IkFk, …, INFN)
<f(N) = Â(I1

’F1, I2
’F2, …, If Ff, …, IN

’FN)

The transition element,
< <f(N)|6I=1

N ti| <I(N) = 6m 6n<I’
m(1)| t | In(1)> Dfi(m/n) 

m and n over all occupied orbitals. Dfi is the (N-1) x (N-1) passive 
electron overlap determinant.



This expression assumes relaxed orbitals. If the wave function is 
un relaxed, the matrix element can be approximated as,

<<f(N)| 6I=1
N ti |<I(N)> = <If(1) | t| Ik(1)> Dfi (f/k)

In evaluating the cross section, two sum rules have been  pointed out

1) The weighted average B.E over all final states <f(N-1,k)
associated with  kof transition equals Koopmans’ theorem
BE - �k.

If Ik is the intensity of a transition <f(N-1, k) corresponding to BE 
Eb(k),
-Hk = 6k Ik Eb(k)/ 6k Ik= 6k|<<f(N-1)k>|<R(N-1)>|2 E(b)



2) The sum of all intensities associated with the states <f(n-1,k) is
Given by, 

Itot = 6k Ik = c 6k|<If(1) | t | Ik(1)>|2 |<<f(N-1, k) | <R(N-1)>|2
= c|< If(1)| t | Ik(1)>|2

A more accurate method is to describe the functions in terms of many 
configurations such CI methods are necessary to explain many final state 
effects.

Atoms

Neglecting relaxation and assuming non relativistic Hamiltonian each PE 
transition is from spin orbital IkFk = In,l,ml Fms to spin orbital IfFf = 
I(Ef,lf,m1

f)Fms
f where Ef is the PE kinetic energy hQ - Eb

v(n,l)



The selection rules are,
'l = lf – l - r1
'm1 = m1

f – m1 = 0, r1
'ms = ms

f – ms = 0

Lf can be l +1 or l-1, l+1 is more important in XPS.
In an atom the situation generally encountered is as follows. Atom takes all 
orientations and the PE makes an angle D with the radiation.
The total cross section for a given sub shell n,l is,

Vnl(Ef) = (4SDaa0
2/3) (hQ)[l R1-1

2(Ef) +  (l+1) Rl+1
2(Ef)]

D0 – fine structure constant a0 – Bohr radius Rlr1(Ef) are radial matrix
Elements between
In,l,ml and I(Ef,lf,ml

f).

Rlr1(Ef) = ³0f Rnl(r) r RE
f,lr1(r)r2 dr = ³0 

f Pnl(r) r PE
f,
lr1(r) dr



Pnl(r) / r { Rnl(r), radial part of In,l.ml

PE
f
, lr1(r)/r { RE

f, l r1(r), radial part of I(Eflfml
f)

differential cross section,

dVnl/d: (Ef) = Vnl/4S[1-(1/2)Enl(Ef) P2(cosD)]
= Vnl/4S[1+(1/2) Enl(Ef)(3/2 sin2D-1)]

Enl(Ef) – asymmetry parameter
P2(cos D) = ½ (3 cos2 D-1)

Allowed values of  Enl is –1 d E d +2
+ve E corresponds to photoelectron emission at 900.
-ve E corresponds to photoelectron emission either parallel or anti-
parallel.
E = 0 o isotope distribution.



For S electron l = 0 lf = 1, E = +2

dVns(Ef)/d: = (Vns(Ef)/4S) sin2D

Max. intensity at D = 900 zero intensity at D=00 and 1800.

For a E = -1,
dVnl(Ef)/d: =  dVnl(Ef)/4S

Zero intensity at D = 900. Max value at D=00 and 1800.



The equation for dV/d: can be written as,
dVnl(Ef)/d: = A + B sin2 D

A and B are constants.

A = (Vnl/4S) (1-Enl/2)

B = (Vnl/4S). 3Enl/4. 

From an empirical evaluation of A and B,
Enl can be calculated 

Enl = 4B/(3A+2B)

Due to dipole approximation, the results may not be an complete 
agreement the expression.



Radial functions P(r) = r · R(r) for (a) the 
occupied orbitals of atomic carbon and
(b)-(c) the continuum photoelectron orbitals
resulting from C2p excitation at different 
photon energies as indicated. Continuum 
wave functions for both allowed emission 
channels are shown (l+1od wave, 
l-1os wave). Note the non-sinusoidal 
character near the nucleus, and the decrease
in the electron deBrogile wavelength Oe
with increasing kinetic energy. 
The definition of The phase shift 
(Gs o Gd + S is also indicated 
for hQ = 200.0 eV and 1486.6 eV. 
In (a), the range of typical bond lengths 
between carbon and low-to-medium
Z atoms is also shown for comparison. 



Molecules

Generally more difficult due to difficulty in accurately representing 
the states

At typical XPS energies atomic cross sections are 
good approximations. Core orbitals are atomic and bonding effects 
are negligible. Hole is localised and continuous orbital has very 
nearly atomic properties. At very low energies of excitation cross 
section resonances due to molecular geometry is observed



Valence level cross section is more complex. Initial orbital Ik can be
written using LCAO
Ik = 6AO CA Ok IAO

K is a symmetry label  2Vg, 1Sn etc IAO is an atomic orbital, A designates 
atom, O the symmetry.

(A for O2, O = 1s) CAȜK is expansion co efficient 

LCAO s can be made with various approximations. If can represented as 
one of the following

1. Simple plane wave of the form exp (ik.r) Not accurate, does not 
represent the atomic potentials not properly orthogonalised

2. OPWs. Not accurate at high energies.
3.   Expansion in terms of partial waves of different l character
4.   Multiple scattering FD method numerically accurate.



A given photoemission event may lead to several vibrational states,
Even when a single vibrational level is initially populated. 
The electronic cross section can be partitioned for different vibrational 
states. Simply by multiplying by appropriate Franck-condon factors.

So for we assumed random orientation on an atomically ordered substrate 
adsorbed molecules can be well ordered most of these calculations are 
done for ups.

we can take the initial orbital Ik may be assumed to be LCAO. Atomic 
orbitals IAO may be assumed to be the representation of Ik. IAO can be 
Slater or Gaussian. Consider final state If such that Ef = hQ - Eb

v(k). 
Assume that this If is somehow determined.

Matrix element for photoemission from molecular orbital Ik is,
<If|r |0Ik>  = <If| r |6AO CAOk IAO> =  6AOCAO<If|r| IAO>



Photoelectric cross section is proportional to square of this matrix 
element. Thus V is related to atomic orbitals IAO. In the near nuclear 
region, If will look like final state orbital from atom. In the region of XPS 
energies valence orbitals will give similar kinetic energies and the 
continuous orbitals will have similar oscillatory behaviour. It can be 
argued that it is the region near the nucleus that most of the non-zero 
contributions to the matrix element occurs. As the distance is increased If 

rapidly becomes an oscillatory functions with period a0.35Å, the de 
Brogile
wavelength for the photoelectron.

This is shown for C2p emission from atomic carbon. Near the nucleus, the 
initial AO has large spatial variation so that a non-canceling contribution 
to the matrix element occurs. In the slowly varying tail of the AO, the 
oscillations in If will make an approximate canceling variation in the 
matrix element integration. 



The square of the matrix element can then be written as,

dV/d: = c(1/hQ) |< <f(N)| 6i=1
N exp(ikhQ ri) e.µI |< I(N)>|2

C is a constant, A0 eliminated in the normalisation to unit photon flux. For 
atoms and molecules the cross section has to be averaged over all initial 
and final states. If all initial gi states are equally populated,

dV/d: = (c/gi) (1/hQ) 6i,f | < <f(N)| 6i=1
N(ikhQ ri) e.µi| <i(N)>|2

If unpolarised radiation is used the summation has to be over all the 
electric field orientations. The final summation will be over 6i,f,e.These are 
all orientations for the target molecule or atom. That has to be included in 
the summation.



Vibrational excitation has to be included. Taking B.O approximation and 
assuming effect of perturbing radiation on nuclear coordinates
negligible,

dV/d: = (c/gi) (1/hQ) 6i,f | < <f(N)| 6i=1
N(i kh Q ri) e.µi| <I(N)>|2

|<<vib
f(P)| <vib

i(P)>|2

We will consider the electronic aspects of the matrix element.

We can assume that the photon wavelength is much larger than the
dimension of the system, then Exp(i khQ ri) is unity.

dV/d: = c/gi(1/hQ) 6i,f|e<<f(N)| 6i=1
Nµi| <I(N)>|2

This assumption is called neglect of retardation or the dipole 
approximation



Schematic illustration of a photoelectron spectrum involving shake-up
and shake-off satellites. The weighted average of all binding energies
yields the Koopmans’ Theorem binding energy -�k and the sum of all
intensities is proportional to a frozen-orbital cross section Vk. The 
adiabatic peak corresponds to formation of the ground state of the ion
[Eb(k)1 { Eb(K=1)].  



Experimental XPS spectrum for the valence levels of gaseous CF4
in comparison with theoretical curve. Relative atomic subshell 
cross-sections were determined experimentally. MgKD radiation
was used for excitation.



Electron propagation outside the surface implies a free-electron 
orbitals, Ik

f(r) = C exp (i Kf.r) with momentum Pf = ƫ kf. Kf need not
be kf. The major source of difference could be refraction. Refraction
conserves only the wave vector parallel to the surface (k||

f = K||
f). 

These effects are small except in grazing angle emission.

The one electron matrix element associated with the matrix element B is 
<Ik

f|Aµ|IE>. The symmetry properties of Bloch functions mean that this 
would be non-zero only if k and kf are related by reciprocal lattice vector g.

kf = k + g
Transitions satisfying this selection rule is called direct. At high excitation 
energies, wave vector of the photon also has to be included in the 
conservation equation

kf = k + g + khQ



For e.g. for hQ = 1486.6 eV, |kf| | 2S/Oe | 19.7 (Ao)-1 for 
valence emission. |khQ| = 2S/O = 0.7Å.

Typical magnitude of reduced wave vector |k| | 2.0Å. 
Transitions violating this selection rule are called non-direct. 
They are possible o phonons, imperfections or emission from 
localised orbitals such as 4f.



Inelastic Scattering in Solids

If a mono energetic flux N0 at energy Ekin is generated at a point, the no 
loss flux N0 at length l can be given as,

N = N0 exp [-l//e(Ekin)] /e
/e is the electron attenuation length. This means that inelastic scattering 
occurs after photoemission, extrinsic. Photoelectron energy loss can also 
be intrinsic, occurring during excitation. The Attenuation lengths are 
measured by XPS or Auger. The results fall in a universal curve.



minimum /e occurs around 30-100 eV and below which it increases. 
Maximum surface sensitivity at 30-100eV. The high energy data can 
be fitted to,

/e(Ekin) D (Ekin)0.52

/e may not be a constant for a material. It may vary from bulk to 
surface as the dominant mode of extrinsic inelastic scattering may 
vary depending on whether it is bulk or surface. For a free electron 
metal, it may not deviate much. 

Models and attenuation length measurements.






