Lecture 17
Auger Electron Spectroscopy



Auger - history cloud chamber
Although Auger emission is intense, it was not used until 1950’s.

Evolution of vacuum technology and the application of Auger
Spectroscopy - Advances in space technology



Various ways to estimate Auger electron kinetic energy

Exirios = B —E D —Ep5 (2t A)-da
=B - B - E 5@ - AlE o5 (2+1) = B p 5]

Exyz = Ex - (Ex(z) + Ey(Z+1)) -7 (EZ(Z) + E2(2+1)) ) (I)A
A has been found to vary from 0.5 + 1.5.
Relaxation more important than ESCA.

Auger energy is independent of sample work function. Electron loses
energy equal to the work function of the sample during emission but gains
or loses energy equal to the difference in the work function of the sample

and the analyser. Thus the energy is dependent only on the work function
of the analyser.
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Fig. 1. Energy distribution and derivative of the energy distribution of secondary ¢lectrons from
a silver target with an incident beam of 1000 eV electrons,

Use of dN(E)/dE plot



Instrumentation
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Early analysers
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X-Y Recorder
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FIGURE®G.2. Schematic representation of a vacancy cascade in
Xe. X, Electrons; O, vacancies; ®. vacancies that were sub-
sequently filled by electrons.

What happens to the system after Auger emission
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When core electrons are involved in Auger, the chemical shifts are
similar to XPS.

For S,0;, the chemical shifts between +6 and —2 oxidation states
are 7eV for k shell and 6 eV for o). The chemical shift for
Auger is given as AE = AE, - 2AE (L)) =5 eV

The experimental value is 4.7 eV

Chemical sifts of core levels - change in relaxation energy.



Characteristics

Electron and photon excitation (XAES). Auger emission is
possible for elements z >3. Lithium is a special case.
No Auger in the gas phase but shows in the solid state.

Auger emission from outer shells is constant with z. Thus
KLL, LMM, MNN series etc can be used for elemental analysis.
Detection limits are 0.1 % atomic.

Spatial resolution ~ 50nm.

Depth resolution is better normal to the surface than in the plane.
Mean free path.



Complications

Plasmons, doubly ionized initial electron states, multiplet splitting,
Multiple excitations, Coster-Kronig transitions. Super coster-Kronig
transitions.

Volume and surface plasmons. Inter and intra band
transitions or shake up

Coster — Kronig L,L; X X=#L

Super Coster Kronig  L{L; X X =L

Cross over transitions. Eg. Mgo. Hole in O may be filled by electron
from Mg - Non isotropic Auger emission from single crystals.
Diffraction.

Isotropic from polycrystalline samples.
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FIGURE 6.1. Relative line positions in K—LL Auger transitions as a function of Z. Atlow 2

one has nearly pure L-S coupling and six lines. However, the 2522p4 3P is strongly forbidden

in the nonrelativistic region. At high Z one has nearly pure jf coupling and six lines; nine lines

are possible in the intermediate coupling region. [Reproduced from Siegbahn et a/,©'?’
Figure 4.1.]



OXYGEN AES PEAK (1ViuA)
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Fig. 8. Oxygen surface concentration versus oxygen c‘(posure fer Ni(109).(O) 147K, (&)302K,
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G. E. MCGUIRE AND P. H. HOLLOWAY

4«5
Carbide
(3)
x4
Heated
Carbide
w
2 (b)
z
©
x4.5
Salurated
Graphite
x1 (c)
\
i 1 1 i [ {
150 260 250 300 350 409

Energy (eV)

Fig. 34. Carbon KVV Auger spzctra of the carbide and graphite forms of surface carbon or
Ni(110). (a) Auger spectrum of a (4 x §) C-saturated carbide surface formed at 330K by a doser
sxposure of C, 11, cquivalent o 200 L. (b) Graphite Augsr spectrum formed by heatinga saturited
carbide layer to 775 K for 15s. (c) Auger spectrum ol a saturated graphite surface fermed 2t 725K
by a doser exposure of C;H, equivalent to 180 L. The energy of the incident electron beam was
20%eV and the modulation voitage was 20V rms. except () which had 0V rms. The
indication of the relative signal magnitude has been corrected for the difierence in modulation

fen olent tha ANALE sional was proportional to the square of the modulition



Chemical effects

Relaxation is larger than in XPS. Chemical effects in XPS will not directly
correspond with those of Auger. The difference between XPS and Auger
energies is called Auger parameter, used to characterise the chemical state.
More changes for transitions involving valence states.

Applications in:

Corrosion

Adhesion

Catalysis

Chemical characterization
Surface reaction
Electronic materials
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High resolution AES using photons

Beam effects

Electron stimulated desorption

Core hole lifetimes are smaller than vibrational time scale and
dissociation is not important. But the core hole will lead to electron
cascade and multiply charged ion many result which will have a large
dissociation probability.

Photon induced desorption is also important but photon fluxes are
much lower. Beam effect are important.

Excitation cross sections in XAES and EAES are different.



Valence band information

In Auger of the type KLV, only one hole is created in the valence
band. The Auger spectrum reflects the density in the valence band
in spectra such as L, ;M, sM, 5 for transition metals such as Sc to Cu,
the interaction between the two holes is important. e-e interactions
determine the properties of such solids. The metal can be treated
as a collection of atoms with individual configurations and a number
of electrons fluctuating rapidly as a result of their interaction. The
interaction can be described as coulomb interaction Ueff which is
defined as Ueff=¢g* + &

&* is the energy required for the transfer of an electron from fixed
level (eg. E¢) to an atom in the average configuration and ¢ is for
the reverse transfer.



With W as the band width, if Ueff << W, the material is like a free electron
metal with delocalised electrons and weak correlation. If Ueff >> W, the
material behaves like localised electron material.

If we regard Ueff as energy difference between two states, one with

two holes and other with two electrons on the atoms, then Ueff is

related to the energy of the Auger process.

Core level line shapes

Core level AES for gases and solids are similar. Lifetime broadening
is similar, relaxation and energy loses result in distinct effects.

Life time broadening, Lorentzian

I(E) = I(Eq).T, 2/ [(E-Eg)2 + I

I(E) — intensity at E

E, — peak centre

[, — core hole life time broadening and one half of FWHM



YaFWHM =T", =h/t = (6.58 x 10-1%) / 1€V
T — lifetime involved, in seconds.

Phonon broadening, Gaussian
I(E) = 1(Eq) exp [-(E-Eg)7 2I°,/]

Extrinsic and intrinsic (shake up)
Plasmons

Added to instrument function.
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Threshold effects in Auger

Decay of the core hole leading to double ionization post collision
effects changing peak energies.

L, 5 spectra of Mg with Mg K, and Al K.

Double ionization satellite in Al K, not in Mg K.,

By electrons it is found that the threshold for double ionization is
~120 eV, but the satellite was not sharp as with X-ray excitation.

When KE of outgoing electron is low, Auger emission can happen
in the field of receding electron. Energy available can be re-partitioned.
If threshold electron is used, Auger emission happens in the field of
The receding electron. These interaction are called post collision
interactions.

Plasmon gains and losses

Plasmon gain occurs by intrinsic mechanism. For it to occur, plasmon
excited should be at the site of ionization, therefore it cannot be
extrinsic.
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Fig. 2. Corparison of O KLL and N KLL Auger spectra from NO gas®3¥ and NO adsorbed
on Ru(0{ 1) at low temperatures and then warmed to 468 K. On warming the NO is seen to
dissociate as shown by the similurity of O KLL spectra to those of chemisorbed oxyvgen shown in
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