
Lecture 9

Hartree – Fock Method and Koopman’s Theorem



<(N) is approximated as a single slater determinant ) of N orthogonal
One electron spin-orbitals. 
One electron orbital Ii = Ii(r) Fi (V)
Fi(V) = D(ms = +1/2) or E (ms = -1/2)
The orthogonality relations are,
³I*i(r) Ij(r) dt { <Ii|Ij> = Sij
³Fi*(V) Fj(V) dt { <Fi | Fj> = Smsi,msj = {1 for D D or E E

0 for D E or E D

<| ) = 1/�N!  I1(1)F1(1) I2(1) F2(1) … IN-1(1) FN-1(1) IN(1)FN(1)
I1(2)F1(2) I2(2) F2(2) … IN-1(2) FN-1(2) IN(2)FN(2)

……………………………………………………
1 …. N label the space and spin co-ordinates of each orbital



The orbitals are assumed to have the symmetry of the molecule

In atoms the orbitals are of the form,

[-1/2   - 6l=1
p Zl/r1l] Ii(1) + [6j=1

N ³Ij*(2) 1/r12 Ij(2) dW2] Ii(1)
Kinetic  e-n attraction           e-e coulombic repulsion

-Gmsi,msj 6j=1
N [³ Ij

*(2) 1/r12 Ij(2) dt2] Ij(w) = 6i Ii(1) I = 1, 2, …N
e-e exchange    

6I’s are the one electron orbital energies. Exchange is possible only for 
Electron with parallel spins. (DD or EE)

Kronecker delta allows this.

This equation expressed in terms of Fock operators,



F(l)Ii(1) = [-1/2  -6l=1
P Zl/rl1 + 6j = 1

N [ƴj - Gmsi, msj Kj] Ii(1) = �i Ii(1)

The Coulomb and exchange operators ƴj and Kj are

ƴjIi(1) = ³Ij
*(2) 1/r12 Ii(2) Ii(1) dt2

Kj II(1) = ³ Ij
*(2) 1/r12 Ii(2) Ij(2) dt2

The coulomb and exchange integrals are,

Jij = < Ii(1)| ƴj | Ij(1)> = ³ ³ Ii
*(1) Ij

*(2) 1/r12 Ii(1) Ij(2) dt1 dt2

Kij = < Ii(1)| ƴj| Ii(1)> = ³ ³ Ii
*(1) Ij

*(2) 1/r12 Ii(2) Ij(1) dt1 dt2

Thus Jij = Jji, Kij = Kji Jii = Kii

Once the SCF is performed, the orbital  energies can be obtained from



Inlml(r, T, I) = Rnl(r)          Ylmi(T, I)

radial part     Angular parat
Spherical harmonics

In molecules the symmetry types such as 1V, 3Sg arise.

Orbitals are approximated as linear combinations of atomic orbitals.

In solids, translational periodicity requires that delocalised orbitals 
are of Bloch-type

Ik(r) = uk(r) exp(i k – r) 

K is the wave vector of the lattice and nk(r) is a function characteristic 
Of Ik which has the same translational periodicity as the lattice.



A free electron will have a constant uk(r) and will yield,

Ik(r) = C exp(i k.r)
C is a normalisation constant.

The momentum P and energy E are,
P = ƫk
E = Ekin= P2/2m = ƫk2/2m

The Hamiltonian can be used with variational principle to find 
optimum I, So that the total energy E = < I|ƨ|I> is minimum. The
Hartree – Fock equations are obtained this way.

These equations in the diagonal form are,
�i = �i

0 + 6j = 1
N (Jij - Gmsi,msj kij)



�i
0 is the expectation value of the one-electron operator for kinetic

Energy and electron – nuclear attraction.

�i
0 = <Ii(1) | -1/2    - 6l=1

p Zl/r1l Ii(1)>

The total energy is given by,

E = < I|ƨ|I> = 6i=1
N �i

0 + 6i=1
N 6j>i

N(Jij - Gmsi,msj
k
ij) + 6l=1

p6m>l Zl2m/rlm

Measured total energy is not the sum of orbital energies.

The best H-F method of determining the binding energy is to compute 
The energy difference between Ef(N-1,k) and Ei(N) corresponding to
<f

(N-1, k) and <i(N). Since electron emission is faster (10-16 sec) than 
nuclear coordinates can be identical in both the states, therefore 
nuclear-nuclear repulsion cancell each other. The ionic state potential
minimum, however, may have different nuclear coordinates and
Therefore, vibrational excitations are possible.



If these excitations are fast compared to the motions of remaining N-1 
electrons (called sudden approximation) different excited states
can be reached. Due to excitation, The remaining N-1 electrons 
will not have the same spatial distribution.  

The spatial form may not change much but the calculated Bes 
can change greatly. The relaxation effects can be important. 
Relativistic Correction - orbital velocity/c

Correlation correction is taken in the form of pair correlation energies.  
For a Ne 1s hole correlation correction can be written,

GEcorr = �(1sD, 1sE) + �(1sD, 2sD) + �(1sD, 2sD) + 3�(1sD, 2pE) + 
3� (1sD, 2pD) + 3�(1sD, 2pE)

This is only a first approximation.  All types of correlation in Both 
Ne and Ne+ with a 1s hole will be a better estimate.



Studies show that core hole is not delocalised.  
An LCAO HF calculation gives +1/2e charge on each Vg1s and Vg1s 
for a 1s hole.
But the energy state is not the minimum.  That corresponds to the state 
for which 1s hole is localised on 1 atom.

For valence states delocalisation may be involved.  Some orbitals  
such as non-bonding orbitals are essentially atomic and 
electron emission can be assumed to lead to localised hole states.

To avoid difficulties associated with hole state calculation, 
Koopmans’ approximation is used. The assumption is that the initial 
one electron orbitals Ii

s making up the, )I(N) state is the same 
as the final orbitals Ii

’s making up the )f(N – 1, k). state. 
The energy for Ef(N-1, K) can be calculated from Ei(N) by eleminting
K state occupancy



Ef
(N-1, k)

kT = 6izk
N �i

0 + 6i zk
N 6j>I, jzk (Jij - Gmsi,msj kij)

This neglects nuclear repulsion.

= 6izk
N �i

0 + 6i=1
N 6j>i

N (Jij - Gmsi,msj kij) - 6i=1
N(Jik - Gmsi,msk kik)

Binding energy of the Kth electron can be given by the 
difference method,

Eb
v(k)KT = Ef

(N-1, k)
KT – Ei(N)

= - �k
0 - 6i=1

N (Jik - Gmsi,msk kin)

Making use of the expression for �k

Eb
v(k)KT = -�k



For occupied orbitals �k is –ve and Eb
v(k) is +ve. Since relaxation

and other effects are neglected, KT binding energies are lower than
theoretical estimates. The error due to relaxation GErelax > 0,

Eb
v(k) = Eb

v(k)KT - GErelax
= -ek - GErelax

This derivation of KT is valid only for closed shell systems represented 
say single Slater determinant with doubly occupied one-electron
orbitals or solids highly delocalised orbitals with quasi – continuous
energy eigen values.



In general for open shell systems there can be more than one way of 
compiling the angular moments and different final states result. For atoms 
there states can be described in terms of L and S. A linear combination of 
Slater determinants are needed.  But slater has shown that if average total 
energies of initial and final state are taken,

Eb
v(k)KT = Ef(k)KT – Ei(k) = -�k

The best way to calculate GErelax is to carry out SCF calculations on initial and 
final states and compare the energy difference with �i.  

The binding energy can be approximated by,

Eb
v(k) = - �k - GErelax + GErelax + GEcorr



More accurate wave function and CI
N electron wave function is written in terms of linear combination of 
states determinates Ij(N)

<(N) = 6j cj)j (N) 

For Ne o calculation with 1071 configuration.  
The coefficients are the following:
)1 -1s2 2s2 2p6 - 0.984
)2 - 1s2 2s1 2p6 3s1 - 0.005
)3 -1s2 2s2 2p5 3p - 0.009
)4 - 1s2 2s2 2p4 4p2 - 0.007 - 0.030
)5 -1s2 2s2 2p4 3p4p - 0.007 - 0.002  



General geometry for defining the differential cross-section dV/d:, Showing
both polarized and unpolarized incident radiation. The Polarization vector e is
parallel to the electric field E of the radiation. In order for the dipole
approximation to be valid, the radiation wave length O should be much larger
than typical target dimensions


