Lecture 20
Auger Electron Spectroscopy



Auger — history cloud chamber
Although Auger emission is intense, it was not used until 1950's.

Evolution of vacuum technology and the application of Auger
Spectroscopy - Advances in space technology



Various ways to estimate Auger electron kinetic energy
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E,yz = Ex— 72 (E(2) + Ey(z+1)) = 72 (E5(2) + Ex(z+1)) - 94

A has been found to vary from 0.5 + 1.9.

Relaxation more important than ESCA.
Auger energy is independent of sample work function. Electron loses
energy equal to the work function of the sample during emission but gains

or loses energy equal to the difference in the work function of the sample

and the analyser. Thus the energy is dependent only on the work function
of the analyser.
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Fig. 1. Energy distribution and derivative of the encrgy distribution of secondary electrons from
a silver larget with an incident beam of 1000V tlectrons.

Use of dN(E)/dE plot



Instrumentation
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Fig. 4. Schematie layout of electron optics and electronics fur a scanning Auger spectrometer.



Early analysers
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Fig 5. Schematic diagram of a retarding field analyzer.
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FIGUREG.2. Schematic representation of a vacancy cascade in
Xe. X, Electrons; Q. vacancies; ®. vacancies that were sub-
sequently filled by clectrons.

What happens to the system after Auger emission
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FIGURE 6.6. The K-LL [25s22p* ('D;)] Augerspectrum of

sulfur for Na;S,0,, showing two pecaks corresponding to

differences in chemical environment. [Reproduced from
Fahlman et a/.'32'}



When core electrons are involved in Auger, the chemical shifts are
similar to XPS.

For S,0;, the chemical shifts between +6 and —2 oxidation states
are 7eV for k shell and 6 eV for o). The chemical shift for
Auger is given as AE = AE, - 2AE (L)) =5 eV

The experimental value is 4.7 eV

Chemical sifts of core levels - change in relaxation energy.



Characteristics

Electron and photon excitation (XAES). Auger emission is
possible for elements z >3. Lithium is a special case.
No Auger in the gas phase but shows in the solid state.

Auger emission from outer shells is constant with z. Thus
KLL, LMM, MNN series etc can be used for elemental analysis.
Detection limits are 0.1 % atomic.

Spatial resolution ~ 50nm.

Depth resolution is better normal to the surface than in the plane.
Mean free path.



Complications

Plasmons, doubly ionized initial electron states, multiplet splitting,
Multiple excitations, Coster-Kronig transitions. Super coster-Kronig
transitions.

Volume and surface plasmons. Inter and intra band
transitions or shake up

Coster — Kronig L,L; X X=#L

Super Coster Kronig  LL; X X =L

Cross over transitions. Eg. MgO. Hole in O may be filled by electron
from Mg - Non isotropic Auger emission from single crystals.
Diffraction.

Isotropic from polycrystalline samples.
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FIGURE 6.1. Relativeline positions in X—LL Auger transitions as a function of Z. Atlow 2

one has nearly pure L-S coupling and six lines. However, the 2522p4 3P is strongly forbidden

in the nonrelativistic region. At high Z one has nearly pure jf coupling and six lines; nine lines

are possible in the intermediate coupling region. [Reproduced from Siegbahn et a/,'3’
Figure 4.1.]



Chemical effects

Relaxation is larger than in XPS. Chemical effects in XPS will not directly
correspond with those of Auger. The difference between XPS and Auger
energies is called Auger parameter, used to characterise the chemical state.
More changes for transitions involving valence states.

Applications in:

Corrosion

Adhesion

Catalysis

Chemical characterization
Surface reaction
Electronic materials
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High resolution AES using photons

Beam effects

Electron stimulated desorption

Core hole lifetimes are smaller than vibrational time scale and
dissociation is not important. But the core hole will lead to electron
cascade and multiply charged ion many result which will have a large
dissociation probability.

Photon induced desorption is also important but photon fluxes are
much lower. Beam effect are important.

Excitation cross sections in XAES and EAES are different.



Threshold effects in Auger

Decay of the core hole leading to double ionization post collision
effects changing peak energies.

L, 5 spectra of Mg with Mg K, and Al K.

Double ionization satellite in Al K, notin Mg K.,

By electrons it is found that the threshold for double ionization is
~120 eV, but the satellite was not sharp as with X-ray excitation.

When KE of outgoing electron is low, Auger emission can happen
in the field of receding electron. Energy available can be re-partitioned.
If threshold electron is used, Auger emission happens in the field of
The receding electron. These interaction are called post collision
Interactions.

Plasmon gains and losses

Plasmon gain occurs by intrinsic mechanism. For it to occur, plasmon
excited should be at the site of ionization, therefore it cannot be
extrinsic.
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Fig. 27. N KLL Auger spectra from nitrogen in a variety of chemical environments. References

NH, £25{259: NOand N, gas (258); CH;CN and N, 0, (234), NO Ru(001)(252); N/W(110)(2=9)
N;-Wi110) (249, 260).
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Auger  spectra
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Fig. 2. Corparison of O KLL and N KLL Auger spectra from NO gas®*® and NO adsorbed
on Ru(01} at low tempcratures and then warmed to 465 K. On warming the NO is seen to
dissociate as shown by the similarity of O KLL spectra to those of chemisorbed oxygen shown in
Fig. 23. The dissociated NO spectra are similar to those of NO on W{110) wherc dissociative

adserption is found at both 100 K and 300 K. 2*° (From rel. 252).
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Auger microscopy



