Vacuum technology

Aspects of flow

For current, flow rate is directly proportional to potential
difference and inversely proportional to resistance.

| =V/Rorl=AV/R
For a fluid flow, Q = (P,-P,)/R or AP/R

Using reciprocal of resistance, called conductance, we



There are two kinds of flow, volumetric flow and mass
flow

Volume flow rate, S = VA

v — the average bulk velocity, A the cross sectional area
S =V, Vis the volume and t is the time.

Mass flow rate is S x density.

G = pvA or pV/t

Mass flow rate is measured in units of throughput, such
as torr.L/s

Throughput = volume flow rate x pressure

Throughput is equivalent to power.

Torr.L/s —» (g/cm?)cmd/s — g.cm/s — J/s - W

It works out that, 1TW = 7.5 torr.L/s
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Figure 3.3 Concept of volumetric flow.



Types of low

1. Laminar: Occurs when the ratio of mass flow to viscosity

(Reynolds number) is low for a given diameter.

This happens when Reynolds number is approximately
below 2000.

Q ~ P12-p22

2. Above 3000, flow becomes turbulent

Q ~ (P12-P2%)0.5

3. Choked flow occurs when there is a flow restriction
between two pressure regions. Assume an orifice and the
pressure difference between the two sections, such as
2:1. Assume that the pressure in the inlet chamber is
constant. The flow relation is, Q ~ P,

4. Molecular flow: When pressure reduces, MFP becomes
larger than the dimensions of the duct, collisions occur
between the walls of the vessel. Q~P,-P,

There are also other flows such as surface diffusion,
permeation and diffusion of one gas through another.
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Figure 3.4 Molecular trajectories at various types of flow.



Different kinds of flow patters
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Figure 3.8 Viscous and molecular flow patterns.



Number of molecules striking unit area from all sides,
n =[3.5 x 1022 P}/(MT)%> per cm? per s

To convert this to volume that strikes per unit area we
need to divide by number density.

S = n/N = 3640 (T/M)%> cm3/s . cm?

For air at RT, this gives, 3640(295/28.7) =11.6 L/s.cm?
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Figure 3.9 Unit surface exposed to molecular “bombardment.”



Flow through an orifice

Assume the flow through an orifice as shown below.
Pressure in the top chamber is constant and it is very small
or near zero below.

The flow through orifice is, A x 11.6 L/s., Ais the area in
sg. cm.

Py

Molecules come

to the orifice from

all angles, but the flow

can be represented in terms
of a velocity.

11.6 L/cmZ2.s

= 11,600 cm3/cm2.s — |
=116 m/s P2

Figure 3.10 Orifice geometry.



Conductance

P is the pressure, v is the velocity, A cross sectional
area and Ap is the pressure difference.

Pumping speed

In the case of an orifice, this can be givenas, S=C =
Q/P as P2 is much smaller than P1.

For constant pumping speed, S = VIn(P,/P,)/(;-t,)
V is the volume of the chamber, P1 and p2 are two

pressure points and t, and t, are times at which these
pressure points occurred.



How to measure pumping speed?
S = Q/P-P,, P is the pressure when gas is leaked and

P, is the ultimate pressure.40° to 10° (MAX)
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Figure 3.12 System for measuring pumping speed.
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Pumps

There is no single pump for UHV technology. Various
pumps are used to take the system from atmosphere to

UHV
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Figure 4.2 Pressure regions in which various vacuum pumps are most effective
(1985 $ values).



Time for pumping

This is a difficult parameter to calculate or predict in view of
several aspects such as out gassing (virtual leak). When
one disregards outgassing, -Vdp/dt = Sp

T = (VIS)In(P,/Py)
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be CO m e I m po rta n t . Figure 4.4 Typical evacuation progress for a large chamber.



Typical vacuum system

E—

HIGH VACUUM PUMP

Figure 4.5 Schematic view of a vacuum chamber and a pump.



Virtual leaks

There are several possibilities of such leaks in
every vacuum system.
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Figure 4.7 Schematic view of a virtual leak.




Typical vacuum system and process of evacuation
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Figure 4.21 Schematic view of a typical vacuum system.



Process of evacuation

Initial pumping
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Figure 4.28 Initial evacuation process for typical metal systems with some elastomer
seals for V/S = 1, shown on a log-linear graph (any consistent set of units can be used).
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Figure 4.29 Outgassing curves (dashed lines) superimposed on a grid of values of
t (Eq. 4.23). The upper curve is stainless steel, mechanically polished; the lower curve
is stainless steel, chemically cleaned.



Coarse vacuum pumps

Rotary pumps
Mechanical diagrams
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Figure 5.5 Basic mechanism of a sliding vane pump.
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Figure 5.6 (a) Two-stage pump. (b) Cross section of a two-stage, oil-sealed, rotary-
vane pump; (1) inlet stage, (2) second stage, (3) relief vaive, (4) motor. (Courtesy of
Alcatel Vacuum Technology.)



Pumping speed
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Figure 5.7 Pumping speed at various inlet pressures.



Diffusion (vapour jet) pumps
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Figure 6.2 Pumping mechanism of a vapor jet pump.
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Figure 6.3 Pressure distribution of the pumped gas in the vicinity of the nozzle. Inlet
pressure, 0.4 mtorr.



Diffstack pump
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Figure 6.5 Schematic cross section of a four-stage pump (Varian VHS type).



Variation of pumping speed
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Figure 6.6 Usual representation of volumetric capacity (pumping speed).
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UHV Chamber
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Figure 6.7 Typical arrangement of valves for a diffusion pump system.,
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Figure 6.8 Pumping speed versus inlet pressure in four different performance regions.
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Figure 6.10 Typical performance with various gases present in the vacuum system.



Back streaming
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Figure 6.19 Plot showing relative backstreaming rates at various distances from the
pump.



Turbomolecular Pumps

Figure 7.15 View of an axial-flow pump. Two rotors and a stator are shown.
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Figure 7.17 Typical assembly of rotors and stators for conventional pumps.
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Figure 7.20 Cross section of a typical, conventional turbopump.
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Figure 7.25 Pumping speeds of a conventional turbopump for nitrogen, helium, and
hydrogen.
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Figure 7.28 Decay of the maximum compression ratio at higher foreline pressures
(for conventional pumps).



Why a turbo is better?
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Figure 7.29 Residual,gas spectrum in an unbaked small system pumped by a
turbopump.



Cryo Pumps
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Figure 8.2 Schematic drawing of a typical cryopump.



Getter Pumps
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Figure 9.5 Various titanium evaporators.




lon Pumps
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UHV Instrumentation
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Figure 11.2 Design and action of ConFlat flanges.



Valves
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Figure 11.4 Example of a small all-metal valve.



UHYV fittings

Figure 11.8 A valve for precise, small variable leak control and a clean quick-con-
nect coupling.

Figure 11.6 Examples of igh-vacuum hardware. Top, a glass-to-metal seal-type

sight port; bottom, ConFlat flanged crosspiece.

Feedthroughs, view ports, gas admittance valves



Pressure measurement, mechanical
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Figure 12.2 Pressure-sensitive elements used in mechanical manometers.



Capacitance
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Figure 12.3 Capacitance manometer; (a) substrate support, (b) sealed housing, (c)
screen, (d) jumper wire, (e) ceramic substrate, (f) film termination, (g) gold film, (h)
pressure part, (j) diaphragm.



To the system

Figure 12.4 McLeod gauge (from C. M. Van Atta; Ref. ]
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Figure 12,5 Thermocouple gauge.
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Figure 12.7 Pirani gauge.
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Figure 12,9 Cold cathode gauge (approximately actual size).
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Figure 12.11 Bayard-Alpert ionization gauge (approximately actual size).



Figure 12.26 An RGA instrument with attached preamplifier section (Stanford Re-
search Systems).



A chamber contains all these, in addition to your experiment!
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Figure 6.7 Typical arrangement of valves for a diffusion pump system.,




