Lecture 8
Chemical/ Electronic Structure of Glass

Svllabus Topic 6. Electronic spectroscopy studies of glass structure

Fundamentals and Applications of

X-ray Photoelectron Spectroscopy (XPS)
a.k.a. Electron Spectroscopy for Chemical Analysis (ESCA)
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Review of Lecture 7

XPS data come with Auger as by-product.

XPS of solids consists of core levels and valence band.

Intensity of core levels decreases with decreasing BE.

BE of a given level is unique to the particular element.

ARXPS allows depth profile by varying the angle between the
detector and sample surface normal.

XPS probes <10 nm of the surface region.

The area under the peak of a core level peak is directly
proportional to the concentration of that particular element.

et $0
Uii} Formation and Structure of Glass Feb 12, 2007. Jain/Lehigh slide 2



Chemical Structure by XPS
Charge potential model for bonds

B

Free atoms Bonded atoms

Consider valence electrons as hollow charged sphere. Neglecting
relaxation effects:

E;=Eo+tq/r,* Zi; qi/ L
AE; = A q;/ .+ A2 qi/ 1y)

Aq; for valence electrons => change in energy of all inner level by
Aq;/r, where 1, is the valence shell radius.

- http://ligand-depot.rcsb.org/marvin/chemaxon/marvin/help/Charge.html
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Chemical Shifts of Si oxide
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+ Binding energy increases with increasing oxidation state of the cations.

gii}@ http://www.emsl.pnl.gov/new/emsl|2002/tutorials/engelhard_xps.pdf
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Sensitivity of core levels to local bondin

Map the peaks for the four kinds
of C in the molecule!

C 1s spectrum of ethyl trifluoroacetate
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Figure 21-5 Carbon 15 X1ay photoelectron spectrum for
ethyl trifluoroacetate. (From K. Sieghahn ef al,, ESCA: Atomic,
Molecular, and Solid-State Studies by Means of Electron Spec-
troscopy, p. 21, Upsala: Almguist and Wiksells, 1967. With permis-
sion)
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Polymethylmethacralate (PMMA)
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A deconvolution procedure may be
needed when the components are not 61
resolved.

To obtain unique decomposition of
spectrum, additional information may be
required, including estimates from ab initio —
simulations.

0 T ~T T Y
538 536 534 532 530 528
Binding Energy [eV]

v
Uii} Formation and Structure of Glass Feb 12, 2007. Jain/Lehigh slide 6



Jain/Lehigh slide 7

Silica glass structure modification by alkali oxide

addition
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Formation of NBO with the addition of MzO

O 1s spectrum of sodium silicate glass
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Counts

Na Auger
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What do the two ??
marked peaks
represent?
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C. H. Hsieh et al. J. Non-cryst. Solids 168, 247-257 (1994).

v
gii} Formation and Structure of Glass Feb 12, 2007. Jain/Lehigh slide 8



O 1s Chemical shift (Aypo.po) 1n silicate glasses
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Figure 9. High-resolution Ols spectra of alkali silicate glasses with 16 mol-% 2.4
Me20 where Me = Li, Na, K or Cs [ from 2.3]. .
2.3. R. Bruckner, H.-U. Chun, and H. Gorerzki, "Photoelectron SPc::tmscopy 2.2
(ESCA) on Alkali Silicate and Soda Aluminosilicate Glasses,” Glastechn., i
Ber., 31[1], 1-7 (1978). L R 2.0 -
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nical shift of the Oy, photoelectron band between non-bridging and bridging oxygens
as a function of the mean electronegativity differences ( X).

Nasu et al. INCS 99, 140 (1988)
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O 1s spectra of sodium silicate, borate, germanate

and tellurite glass series

(a). xNa,0O-(1-x)SiO,

(b). xNa,0O-(1-x)B,04
(c). xNa,O-(1-x)GeO,
(d). xNa,O-(1-x)TeO,

What question was raised
earlier in the course with
regard to the difference in
the structure of alkali
silicates and germanates?

Nanba and Miura
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Network modification in alkali germanate glasses
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Xu et al. Phys Chem Glass (1996)
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Addition of alkali means
two choices:

0_
Creation of NBO as in
silicates

or

Change of Ge from
tetrahedral to octahedral
coordination
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NBOs vs Ge-octahedra?
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533.0

O-1s BE for SiOz

Polycrystalline powder of stishovite, natural mineral from meteor

crater Arizona, the densest modification of SiO2

533.2
532.9
533.8
532.7
532.7
532.8
533.2
532.0

Alpha-quartz

pelletized, composition determined by XPS is SiO2.08
Thermal oxide - SiO2.1.

Thermaly grown SiO2

Fused quartz.

alpha phase, insulator, polycrystalline

Quartz (rock crystal).

Polycrystalline powder of stishovite from meteor crater, Arizona

NIST X-ray Photoelectron Spectroscopy Database: http://srdata.nist.gov/xps/

et $0
Uii} Formation and Structure of Glass Feb 12, 2007. Jain/Lehigh slide 13



XPS instrument schematic

Hemispherical field

Multichannel
transducer

Multichannel
analyzer

Output
display

Rowland circle

: Crystal
/”5" disperser

24

X—Eay source
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Complications of XPS on glass

Charging of surface
Error in BE
Error in composition

Damage by sputtering (if used in depth analysis)
Alteration of structure

v
gii; Formation and Structure of Glass Feb 12, 2007. Jain/Lehigh slide 15



Charging of insulating sample

Net build up of charge on the surface when e loss is not
compensated by inward flow => Surface at unknown +V =>

All peaks shifted/broadened by ~ the same amount.

Problem mostly corrected by flooding with low energy e.

For precise b.e. values, need a reference:

1. Adventitious C-1s (may not be present on pristine surface)

2. Thin overlayer of Au
3. Internal reference e.g. Si-2p in silicate glasses.
4. Use Auger parameter

v
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Focused x-ray beam

~2eV electrons
~7e\/ Artions -

* Low-energy electrons from a cold cathode flood gun alleviates positive charging

+ Low-energy source of positive ions alleviates the surrounding negative charge
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fnpovs. time of XPS experiment
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Na conc. vs time
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X-irradiation is the primary cause for Na accumulation. Once liberated,
Na can migrate to the surface very quickly, if e-field is present.
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Total oxygen vs time
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The loss of oxygen is mostly determined by x-ray dose; electrons
retard it.
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Contrast of x-ray and e-gun effects
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For experimental reasons, both
e-gun and x-rays had to be used
during analysis of all cases.
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Summary: XPS capabilities

* Elements detected from Li to U.

* Nondestructive (x-ray beam damage in certain materials?)

« Quantitative.
« Chemical bonding (e-density) analysis.

« Surface sensitivity from 5 to 75 angstroms.

« Conducting and insulating materials.

* Detection limits that range form 0.01 to 0.5 atom percent.
« Spatial resolution for surface mapping from >10 um.

 Depth profiling (non-destructive as well as destructive).
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