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What is the surface?

B What happens at surfaces is extremely important in a vast
range of applications from environmental corrosion to
medical implants.

® A surface can be thought of as the interface between
different phases (solid, liquid or gas).

B We can think of the surface as the top layer of atoms but in
reality the state of this layer is very much influenced by the
2 — 10 atomic layers below it (~0.5 — 3 nm).

B Surface modification treatments are often in the range of
10 — 100 nm thick. >100 nm can be thought of as the bulk.

® Surface analysis encompasses techniques which probe the
properties in all these ranges.
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Surface Analysis - Techniques )
Available

Properties and reactivity of the surface will depend on:
bonding geometry of molecules to the surface
physical topography EXCITATION Photons EMISSIO
chemical composition

ions
chemical structure
atomic structure electrons J\f‘f/
electronic state

with material

No one technique can provide all these
pieces of information. However, to
solve a specific problem it is seldom
necessary to use every technique

available.
60 March 2013 TRANSMISSION
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XPS-Basic Principle
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Auger electron vs x-ray emission yield

1 O B Auger Electron Emission
08| e
>
= 06l
'-6 .
3
o 04|
al
0.2}
X-ray Photon Emission
0 |

| | | | | | | |
5 10 15 20 25 30 35 40 Atomic Number
B Ne P Ca Mn Zn Br Zr Elemental Symbol

6th March 2013




(3 SINTEF

XPS spectrum ITO
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Peak width (AE)
AE = (AE,? + AE? + AE,?)'?

- : o Natural width X Analyser contribution
Gaussian broadening: X-ray source contribution

-Instrumental:
There is no perfectly resolving spectrometer nor a perfectly monochromatic X-ray source.

-Sample
For semiconductor surfaces in particular, variations in the defect density across the surface will lead to
variations in the band bending and, thus, the work function will vary from point to point. This variation in
surface potential produces a broadening of the XPS

peaks.
-Excitation process such as the shake-up/shake-off processes or vibrational broadening.
B Lorentzian broadening.

The core-hole that the incident photon creates has a particular lifetime (t) which is dependent on how quickly
the hole is filled by an electron from another shell. From Heisenberg’s uncertainty principle, the finite
lifetime will produce a broadening of the peak.

I'=h/t

Intrinsic width of the same energy level should increase with increasing atomic number
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Spectroscopy

B Source-defined small area XPS

m 15 um to 400 um

Snapshot spectrum acquisition

m Up to 112 channels

B Faster serial mapping

B Faster profiling
Unique parallel ARXPS with up to 96 channels
Large samples (70 mm x 70 mm x 25 mm)
Sputter profiles

Mapping posmble up to full size of sample
holder > _

1SS included €

Target applications

* Thickness measurements

* Surface modification, plasma & chemical
* Self assembly

* Nanotechnology

* Ultra thin film technologies

* Shallow interfaces
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Sample requirements
» Has to withstand high vacuum (< 107 Torr).
» Has to withstand irradiation by X-rays
» Sample surface must be clean!

» Reasonably sized.
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The probability that a
photoelectron will escape from
the sample without losing
energy is regulated by the Beer-
Lambert law:

7
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Where A, is the photoelectron
inelastic mean free path
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Attenuation length (A) =0.9 IMFP
IMFP: The average distance an electron with a given energy travels between

successive inelastic collisions
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Features of the XPS spectrum

Primary structure

E Core level photoelectron peaks (atom excitation)
- Valence band spectra
E CCC, CCV, CVV Auger peaks (atom de-excitation)

Secondary structure
E X-ray satellites and ghosts
E Shake up and shake off satellites

- Plasmon loss features
E Background (slope)
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Quantification

Unlike AES, SIMS, EDX, WDX there are little in the way of matrix effects to worry
about in XPS. We can use either theoretical or empirical cross sections, corrected for
transmission function of the analyser. In principle the following equation can be used:

I=JpocKi
I is the electron intensity
J is the photon flux,
p is the concentration of the atom or ion in the solid,

o s is the cross-section for photoelectron production (which depends on the element and
energy being considered),

K is a term which covers instrumental factors,
/ is the electron attenuation length.

In practice atomic sensitivity factors (F) are often used:

[A] atomic Y% = {(IA/FA)/X(1/F)}
Various compilations are available.
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Koopmans Theorem

Koopman's Theorem:
The BE of an electron 1s simply difference between:
initial state (atom with n electrons) and

final state (atom with n-1 electrons (ion) + free photoelectron)

BE =Egpi0y— E

initial (n)

If no relaxation followed photoemission, BE = - ¢
¢ = orbital energy which can be calculated from Hartree-Fock method
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considered)

B The charge potential model (Siegbahn et al. 1969)
B (atom considered as a hollow sphere)
Jy
W E;=Ei,+kq; +Zq/r;; (i#))
I
M E, BE of a core level on atom i 4
N E, energy reference
L q; charge on atom 1
O 2q/r;; potential on atom 1 due to point changes on

surrounding atoms j

W Potential = gy/r, (r, =average valence orbital radius) 1s the same at all points nside the

cotent ov Y
) oxidation AG>0 — AE>0
B Simplifications reduction " Aq<0 — AE<0

n (a) Intra- and extra-atomic relaxation effects not encountered
n (b) Assumes that the materials involved have same ® values
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Koopmans Theorem-deviation

Measured BE's and calculated orbital
energies different by 10-30 eV
because of:

- electron rearrangement to shield core
hole - the frozen orbital
approximation is not accurate

- electron correlation & relativistic
effects

Both initial state effects and final
state effects affect measured BE

315

310

Calculated binding cnergics (eV)

305

| ! 1
290 295 300
Experimental binding energies (eV)

Comparison of experimental XPS C 1s binding energies with those
calculated via Koopman’s theorem for C in a range of molecules. Although
experimental and theoretical values differ by 15eV (associated with relaxation

effects) the systematic comparison is excellent as indicated by the straight line of
unity gradient (after Shirley, 1973).
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Chemical shift

AE = —

Initial state contribution final state contribution
B Aqg: changes in valence charge B AR: relaxation energy change arising
from the response of the atomic
® AV, : Coulomb interaction between the environment (Iocal electronic structure)
photoelectron (i) and the surrounding to the screening of the core hole

charged atoms.
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Arbitrary Units

Chemical shift
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Plasmons

B They describe the interaction (inelastic scattering) of the PE with the plasma oscillation of the outer
shell (valence band) electrons

®  Plasmons in their quantum mechanical description are pseudoparticles with energy E =ho

B o= (ne*¢;m)"?/2n n =valence electron density,
e, m electron charge and mass
go=dielectric constant of vacuum
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Arbitrary Units

Arbitrary Units
1

Peak asymmetry
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Use of an ion gun to erode the sample surface and re-analyse
Enables layered structures to be investigated

Investigations of interfaces

Depth resolution improved by:

Low beam energies

Small ion beam sizes

Sample rotation
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Angle Resolved XPS (ARXPS)
for non-destructive depth profileon oxide
I
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XPS-Check list

Depth of analysis ~ Snm

All elements except H and He
Readily quantified (limit ca. 0.1 at%)
All materials (vacuum compatible)
Chemical/electronic state information
-Identification of chemical states
-Reflection of electronic changes to the atomic potential
Compositional depth profiling by
-ARXPS (ultra thin film <10 nm),
-change of the excitation energy
-choose of different spectral areas
-sputtering

Ultra thin film thickness measurement
Analysis area mm? to 10 micrometres
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Interfacial studies of Al,O5 deposited on 4H-SiC(0001)

Avice, Diplas, Thagersen, Christensen, Grossner, Svensson, Nilsen, Fjellvag, Watts
Appl. Physics Letters, 2007,;91, 52907, Surface & Interface Analysis,2008;40,822

d=Ag; cosB In(1+R/R)

d: SiOx film thickness

Ag;:inelastic mean free path for Si,

©: the angle of emission,

R: the Si 2p intensity ratios ISiox/ISiC,

R the Si 2p intensity ratios 1~Siox/I~SiC where |~ is the
intensity from an infinitely thick substrate.

Re=(0g;,SI0; . Ag;,SI0,) / (Tg;ysi - Asisi)

where 0g; si02 @and Ag; sio2 are the number of Si atoms per
SiO, unit Volume and the inelastic mean free path
respectively

The 0g; si02 / Ts; 5; ratio is given by

Ogisio2/ (Osisi = (Dsioz - Fsi) / Ds; - Fsioz

where D is the density of the material and F the formula
weight.

For the calculations we also assumed that the Si 2p
photoelectrons from both SiC and Si oxide film will be
attenuated by the same amount as they travel through the
Al203 film therefore, their intensity ratio will reflect the
attenuation of the Si 2p electrons coming from the SiC
through the Si oxide film.

From XPS

d=1nm at RT, d=3nm at 1273 K

6th March 2013
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XPS on ITO e-beam deposited prior and after annealing
(SINTEF SEP 09)
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Band bending in ZnO

R. Schifano, E. V. Monakhov, B. G. Svensson, and S. Diplas, 2009, Appl. Phys. Lett. 94, 132101
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CIGS solar cell
= CIGS solar cell

» Energy/environmental application
* Solar cells based on Cu(In, Ga)Se, (CIGS)
« Thin-film stack on glass
» Mo and Zn oxide layer form electrical contacts

TN * p-type CIGS film (sunlight absorber) and n-type
Back contact CdS film form p-n junction

« Excellent efficiency
 Low cost compared to thicker silicon-based solar cells

3SEM of a Cu(In,Ga)Se, solar cell (cross-section)  Practical problem
and its mode of operation

Sun light

I | um

« Controlling film composition and interfacial chemistry
between layers (affects electrical properties)

o XPS solution

« XPS sputter depth profiling
= Elemental and composition information as a function of depth
= [dentify chemical gradients within layers
= |nvestigate chemistry at layer interfaces

Acknowledgement: Thermo Electron Corporation

6th March 2013


Presenter
Presentation Notes
Solar cells based on (CIGS) thin films have demonstrated excellent efficiencies and offer a low-cost potential as compared with bulk-silicon-based solar cells, which are about 200 times thicker. CIGS solar cells consist of a thin-film stack on a substrate (typically glass) as shown in the SEM image to the left of the slide. The molybdenum layer and the zinc oxide layer form the electrical contacts. The p-type CIGS film acts as the sunlight absorber layer, with a thin n-type CdS layer forming a p-n junction. The most common manufacturing methods are simultaneous or sequential evaporation or sputtering of copper, indium, and gallium. Vaporised selenium reacts with the metals in order to establish the final film composition. One of the major challenges in producing these thin film solar cells is to control the film composition. Reproducibility of the required layer design in commercial volumes has proven to be problematic. This is critical as the electrical properties of the cell depend on the exact composition of the layers. XPS depth profiling can be used to determine both the composition through the device, and the interfacial chemistry.
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CIGS solar cell

= CIGS solar cell

» Depth profile of CIGS film stack

» Demonstrates standardless quantification of XPS
» Excellent quantification agreement between XPS and

- ol Rutherford BackScattering (RBS)
| zno | M » Both techniques show cross-over of In and Ga close to
e [ Mo 1.6um depth
e ||  XPS tool is able to analyze product solar cell device
ol |
) |
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Sputter depth profile of CIGS film stack Rutherford BackScatter profile of CIGS film stack

Acknowledgement: Thermo %Itﬁcfr'on Corporation
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Presenter
Presentation Notes
The XPS depth profile gives a standardless quantification of the CIGS film stack as a function of depth.  A comparison of the XPS data with Rutherford Backscattering data from a similar test sample verifies the accuracy of that quantification.  (In the case of the RBS, it was not possible to analyze a real product solar cell film, as in the XPS example, but a similar test film deposited onto a wafer was tested.)  In both the XPS and RBS data, we can see the composition gradient of the gallium and indium in the CIGS layer, where the two elements cross profiles close to 1.6 microns.
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Interface between p-Si/ZnO: Si HF -
with and without Ar etched (SINTEF SEP 09)
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Elemental distribution and oxygen deficiency of magnetron sputtered ITO films
A. Thagersen, M.Rein, E. Monakhov, J. Mayandi, S. Diplas
JOURNAL OF APPLIED PHYSICS 109, 113532 (2011)
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