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Material Characterisation Methods 
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What is the surface? 
 What happens at surfaces is extremely important in a vast 

range of applications from environmental corrosion to 
medical implants. 

 A surface can be thought of as the interface between 
different phases (solid, liquid or gas). 

 We can think of the surface as the top layer of atoms but in 
reality the state of this layer is very much influenced by the 
2 – 10 atomic layers below it (~0.5 – 3 nm). 

 Surface modification treatments are often in the range of 
10 – 100 nm thick.  >100 nm can be thought of as the bulk. 

 Surface analysis encompasses techniques which probe the 
properties in all these ranges. 
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 Properties and reactivity of the surface will depend on: 
   bonding geometry of molecules to the surface   
   physical topography 
   chemical composition 
   chemical structure 
   atomic structure 
   electronic state 

 
 

No one technique can provide all these  
pieces of information.  However, to  
solve a specific problem it is seldom  
necessary to use every technique  
available. 
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Auger electron vs x-ray emission yield 
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XPS spectrum ITO 
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Peak width (ΔE)  
 

ΔE = (ΔEn
2 + ΔEp

2 + ΔEa
2)1/2 

 
 

 Gaussian broadening:  
 
-Instrumental: 
There is no perfectly resolving spectrometer nor a perfectly monochromatic X-ray source.  
 
-Sample 
 For semiconductor surfaces in particular, variations in the defect density across the surface will lead to 

variations in the band bending and, thus, the work function will vary from point to point. This variation in 
surface potential produces a broadening of the XPS 

 peaks.  
 
-Excitation process such as the shake-up/shake-off processes or vibrational broadening. 

 
 Lorentzian broadening.  
 
 The core-hole that the incident photon creates has a particular lifetime (τ) which is dependent on how quickly 

the hole is filled by an electron from another shell. From Heisenberg’s uncertainty principle, the finite 
lifetime will produce a broadening of the peak. 

  
Γ=h/τ 

 
 Intrinsic width of the same energy level should increase with increasing atomic number  

Natural width 
X-ray source contribution 

Analyser contribution 
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Examples of XPS spectrometers 
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Schematic of an XPS spectrometer 
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Instrument: Kratos Axis UltraDLD at MiNaLab 
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The new XPS instrument-Theta Probe 
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 Spectroscopy  
 Source-defined small area XPS  

 15 µm to 400 µm 

 Snapshot spectrum acquisition 
 Up to 112 channels 
 Faster serial mapping 
 Faster profiling 

 Unique parallel ARXPS with up to 96 channels 
 Large samples (70 mm x 70 mm x 25 mm) 
 Sputter profiles 
 Mapping possible up to full size of sample 

holder 
 ISS included 

Target applications 
• Thickness measurements 
• Surface modification, plasma & chemical 
• Self assembly 
• Nanotechnology 
• Ultra thin film technologies 
• Shallow interfaces 
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Sample requirements 

 Has to withstand high vacuum (≤ 10-7 Torr). 

 Has to withstand irradiation by X-rays 

 Sample surface must be clean! 

 Reasonably sized. 
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XPS Depth of Analysis 

 The probability that a 
photoelectron will escape from 
the sample without losing 
energy is regulated by the Beer-
Lambert law: 
 
 
 

 Where λe is the photoelectron 
inelastic mean free path  
 

Attenuation length (λ)  ≈0.9 IMFP 
IMFP: The average distance an electron with a given energy travels between 

successive inelastic collisions 
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Features of the XPS spectrum 
 Primary structure 

 
 - Core level photoelectron peaks (atom excitation) 
 - Valence band spectra  
 - CCC, CCV, CVV Auger peaks (atom de-excitation) 

 
 Secondary structure 

 
 - X-ray satellites and ghosts   
 - Shake up and shake off satellites 
 - Plasmon loss features 
 - Background (slope) 
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Quantification 
 Unlike AES, SIMS, EDX, WDX there are little in the way of matrix effects to worry 

about in XPS.  We can use either theoretical or empirical cross sections, corrected for 
transmission function of the analyser.  In principle the following equation can be used: 

I = J ρ σ K λ 
 I is the electron intensity 
 J is the photon flux,  
 ρ is the concentration of the atom or ion in the solid,  
 σ s is the cross-section for photoelectron production (which depends on the element and 

energy being considered),  
 K is a term which covers instrumental factors,  
  λ is the electron attenuation length. 

 
 In practice atomic sensitivity factors (F) are often used: 
 [A] atomic % = {(IA/FA)/Σ(I/F)} 
 Various compilations are available. 
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Koopmans Theorem 

Koopman's Theorem: 
The BE of an electron is simply difference between: 
 initial state (atom with n electrons) and  
final state (atom with n-1 electrons (ion) + free photoelectron) 
 
BE = Efinal (n -1) – Einitial (n) 

 
If no relaxation followed photoemission, BE = - ε  
ε = orbital energy which can be calculated from Hartree-Fock method 
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CHEMICAL SHIFT- (only initial state 
considered) 

 The charge potential model  (Siegbahn et al. 1969)  
 (atom considered as a hollow sphere) 

 
 Ei = Ei0 + kqi + Σq/ri,j    (i≠j)  

 
  Ei    BE of a core level on atom i 
  Ei0   energy reference 
  qi  charge on atom i 
  Σq / ri,j  potential on atom i due to point changes on    

 surrounding atoms j 
 

 Potential = qi/rv (rv =average valence orbital radius) is the same at all points inside the 
sphere 

 Δ Ei = kΔq + ΔV 
 Simplifications 
  (a) Intra- and extra-atomic relaxation effects not encountered 
  (b) Assumes that the materials involved have same Φ values  

oxidation 

reduction 

Δq>0  → ΔEi>0  

Δq<0  → ΔEi<0  
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Koopmans Theorem-deviation 

Measured BE's and calculated orbital 
energies different by 10-30 eV 
because of: 

- electron rearrangement to shield core 
hole - the frozen orbital 
approximation is not accurate 

- electron correlation & relativistic 
effects 

 Both initial state effects and final 
state effects affect measured BE 
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Chemical shift 

ΔE(i)  =  kΔq  +  ΔVM  –  ΔR  
    

 
 

Initial state contribution 
 

 Δq: changes in valence charge 
 

 ΔVM : Coulomb interaction between the 
photoelectron (i) and the surrounding 
charged atoms.  
 

. 

 
 
 
 

final state contribution  
 

 ΔR: relaxation energy change arising 
from the response of the atomic 
environment (local electronic structure) 
to the screening of the core hole 

20 
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Chemical shift - Growth of ITO on p c-Si 
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Chemical shift  
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Shake-up satellites in Cu 2p 
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Plasmons 

Pure elements 

Mo-Si-Al 
Compound 

 They describe the interaction (inelastic scattering) of the PE with the plasma oscillation of the outer 
shell (valence band) electrons 
 

 Plasmons in their quantum mechanical description are pseudoparticles with energy Ep=hω 
 

 ω = (ne2/ε0m)1/2/2π n =valence electron density,  
 e, m electron charge and mass 
 ε0=dielectric constant of vacuum 
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Peak asymmetry 

Peak asymmetry in metals caused by small energy electron-hole excitations 
near EF of metal 
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Depth profile with ion sputtering 

 Use of an ion gun to erode the sample surface and re-analyse 
 Enables layered structures to be investigated 
 Investigations of interfaces 
 Depth resolution improved by: 
 Low beam energies 
 Small ion beam sizes 
 Sample rotation 

SnO2 

Sn 

Depth 
500 496 492 488 484 480 
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Angle Resolved XPS (ARXPS) 
for non-destructive depth profile 

Substrate 

I(d) = Io*exp(-d/λcos θ) 
 θ 

Film 

I (d) = Io* exp(-d/λ) 

 
λ=attenuation length (λ ≈0.9 IMFP) 
 

λ=538αA/EA
2 +0.41αA(αA EA)0.5 

 
(αA

3 volume of atom,  EA electron energy)  
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XPS-Check list 
 Depth of analysis ~ 5nm 
 All elements except H and He 
 Readily quantified (limit ca. 0.1 at%) 
 All materials (vacuum compatible) 
 Chemical/electronic state information 
 -Identification of chemical states 
 -Reflection of electronic changes to the atomic potential 
 Compositional depth profiling by  
 -ARXPS (ultra thin film <10 nm),  
 -change of the excitation energy  
 -choose of different spectral areas 
 -sputtering 
 Ultra thin film thickness measurement  
 Analysis area mm2 to 10 micrometres 
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Interfacial studies of Al2O3 deposited on 4H-SiC(0001) 
Avice, Diplas, Thøgersen, Christensen, Grossner, Svensson, Nilsen, Fjellvåg, Watts 

Appl. Physics Letters, 2007;91, 52907, Surface & Interface Analysis,2008;40,822  

 d=λSi cosθ ln(1+R/R∞)   
 

 d: SiOx film thickness   
 λSi:inelastic mean free path for Si,  
 Θ: the angle of emission,  
 R: the Si 2p intensity ratios ISiox/ISiC,  
 R∞ the Si 2p intensity ratios I∞Siox/I∞SiC where I∞ is the 

intensity from an infinitely thick substrate.  
 R∞=(σSi,SiO2 . λSi,SiO2) / (σSi,Si . λSi,Si) 

  
 where σSi,SiO2 and λSi,SiO2 are the number of Si atoms per 

SiO2 unit volume and the inelastic mean free path 
respectively 

 The σSi,SiO2 / σSi,Si ratio is given by  
 σSi,SiO2 / (σSi,Si = (DSiO2 . FSi) / DSi . FSiO2  
 where D is the density of the material and F the formula 

weight. 
 

 For the calculations we also assumed that the Si 2p 
photoelectrons from both SiC and Si oxide film will be 
attenuated by the same amount as they travel through the 
Al2O3 film therefore, their intensity ratio will reflect the 
attenuation of the Si 2p electrons coming from the SiC 
through the Si oxide film.  
 

 
From XPS  

 
d= 1nm at RT, d=3nm at 1273 K 

Si0 

Si4+ Si3+ SiC/Si2+ Al 2p plasmon contribution 

Si+ 

SiC 
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SiOx 
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XPS on ITO e-beam deposited prior and after annealing 
(SINTEF SEP 09) 

Sn 3d In 3d 

O 1s Valence band 

e-beam deposited 

e-beam deposited 

Air annealed 300 C 

Air annealed 300 C 
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Band bending in ZnO 
R. Schifano, E. V. Monakhov, B. G. Svensson, and S. Diplas, 2009, Appl. Phys. Lett. 94, 132101  
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CIGS solar cell 
Introduction 

3SEM of a Cu(In,Ga)Se2 solar cell (cross-section) 
and its mode of operation 

 CIGS solar cell 
• Energy/environmental application 

• Solar cells based on Cu(In, Ga)Se2 (CIGS)  
• Thin-film stack on glass 
• Mo and Zn oxide layer form electrical contacts 
• p-type CIGS film (sunlight absorber) and n-type 

CdS film form p-n junction 
• Excellent efficiency 
• Low cost compared to thicker silicon-based solar cells 

• Practical problem 
• Controlling film composition and interfacial chemistry 

between layers (affects electrical properties) 
• XPS solution 

• XPS sputter depth profiling 
 Elemental and composition information as a function of depth 
 Identify chemical gradients within layers 
 Investigate chemistry at layer interfaces 

Acknowledgement: Thermo Electron Corporation 

Presenter
Presentation Notes
Solar cells based on (CIGS) thin films have demonstrated excellent efficiencies and offer a low-cost potential as compared with bulk-silicon-based solar cells, which are about 200 times thicker. CIGS solar cells consist of a thin-film stack on a substrate (typically glass) as shown in the SEM image to the left of the slide. The molybdenum layer and the zinc oxide layer form the electrical contacts. The p-type CIGS film acts as the sunlight absorber layer, with a thin n-type CdS layer forming a p-n junction. The most common manufacturing methods are simultaneous or sequential evaporation or sputtering of copper, indium, and gallium. Vaporised selenium reacts with the metals in order to establish the final film composition. One of the major challenges in producing these thin film solar cells is to control the film composition. Reproducibility of the required layer design in commercial volumes has proven to be problematic. This is critical as the electrical properties of the cell depend on the exact composition of the layers. XPS depth profiling can be used to determine both the composition through the device, and the interfacial chemistry.
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CIGS solar cell 
Depth profile of CIFS film stack 

 CIGS solar cell 
• Depth profile of CIGS film stack 

• Demonstrates standardless quantification of XPS 
• Excellent quantification agreement between XPS and 

Rutherford BackScattering (RBS) 
• Both techniques show cross-over of In and Ga close to 

1.6µm depth 
• XPS tool is able to analyze product solar cell device  

Zn 

O 

Se 

Cu 

Ga 

In 

Mo 

CdS 

C 

Sputter depth profile of CIGS film stack Rutherford BackScatter profile of CIGS film stack 

Acknowledgement: Thermo Electron Corporation 

Presenter
Presentation Notes
The XPS depth profile gives a standardless quantification of the CIGS film stack as a function of depth.  A comparison of the XPS data with Rutherford Backscattering data from a similar test sample verifies the accuracy of that quantification.  (In the case of the RBS, it was not possible to analyze a real product solar cell film, as in the XPS example, but a similar test film deposited onto a wafer was tested.)  In both the XPS and RBS data, we can see the composition gradient of the gallium and indium in the CIGS layer, where the two elements cross profiles close to 1.6 microns.
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Interfaces in Solar cells 
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Interface between p-Si/ZnO: Si HF  
with and without Ar etched (SINTEF SEP 09)  

SiO2 

Si Zn mixed oxide 

Si 

RT depos + 300 C annealing 
RT depos 
Depos  at 500 C  
Depos  at 500 C + Ar etching   
Depos  at RT + Ar etching   

No Ar etching Ar etching 
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Elemental distribution and oxygen deficiency of magnetron sputtered ITO films 
A. Thøgersen, M.Rein, E. Monakhov, J. Mayandi, S. Diplas 

JOURNAL OF APPLIED PHYSICS 109, 113532 (2011) 

36 
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Thank you for your attention 
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